精英家教网 > 高中数学 > 题目详情
5.已知Rt△ABC中,C=$\frac{π}{2},A=\frac{π}{6},AB=2,则\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$=(  )
A.$-2\sqrt{3}$B.$2\sqrt{3}$C.-4D.4

分析 根据直角三角形的性质和向量的数量积公式计算即可.

解答 解:∵C=$\frac{π}{2}$,A=$\frac{π}{6}$,AB=2
∴B=$\frac{π}{3}$,BC=1,AC=$\sqrt{3}$
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$=-$\overrightarrow{AB}$•$\overrightarrow{CB}$-$\overrightarrow{BC}$•$\overrightarrow{AC}$-$\overrightarrow{CA}$•$\overrightarrow{BA}$=-2×1×cos$\frac{π}{3}$-0-$\sqrt{3}$×2×cos$\frac{π}{6}$=-1-3=-4,
故选:C

点评 本题考查了直角三角形的性质和向量的数量积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:选择题

的值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(-1)=0,$f(a-\frac{1}{2})<0$,
(1)求f(1)的值;
(2)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=loga(x3-2x)(a>0且a≠1)在区间(-$\sqrt{2}$,-1)内恒有f(x)>0,则f(x)的单调递减区间为(  )
A.(-∞,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)B.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)D.(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=log2(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)的单调递减区间是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(-2,3)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列{an}满足a1=$\frac{4}{3},{a_{n+1}}-1={a_n}({a_n}-1),n∈{N^*}$且Sn=$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$,则Sn的整数部分的所有可能值构成的集合是{0,1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:函数f(x)=2x2-2(m-2)x+3m-1在(1,2)单调递增
命题q:方程$\frac{x^2}{m+1}+\frac{y^2}{9-m}=1$表示焦点在y轴上的椭圆
若p或q为真,p且q为假,¬p为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.由下列各组命题构成的新命题“p且q”为真命题的是(  )
A.p:4+4=9,q:7>4B.p:a∈{a,b,c},q:{a}⊆{a,b,c}
C.p:15是质数,q:8是12的约数D.p:2是偶数,q:2不是质数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow a=(1,\sqrt{1+sin{{40}^0}}),\overrightarrow b=(\frac{1}{{sin{{65}^0}}},x)$共线,则实数x的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{2}tan{25°}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案