精英家教网 > 高中数学 > 题目详情
5.已知$tanα=\frac{1}{2}$,则cos2α=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$±\frac{2}{5}$D.$±\frac{3}{5}$

分析 由条件利用二倍角的余弦公式,求得要求式子的值.

解答 解:cos2α=cos2α-sin2α=$\frac{co{s}^{2}α-si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{1-\frac{1}{4}}{1+\frac{1}{4}}$=$\frac{3}{5}$,
故选:B.

点评 本题主要考查二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知复数z=a(1+i)-2为纯虚数,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线y=x2上到直线2x-y-4=0距离最近的点的坐标是(  )
A.(1,1)B.$({\frac{1}{2},\frac{1}{4}})$C.$({\frac{1}{3},\frac{1}{9}})$D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=|lg(x+1)|,实数a,b满足:$a<b,且f(a)=f({-\frac{b+1}{b+2}})$,则f(8a+2b+11)取最小值时,a+b的值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=($\frac{1-{2}^{x}}{1+{2}^{x}}$)cosx的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=-x2+3x+1,x∈[-1,2)的值域为[-3,$\frac{13}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一质点按规律s=2t3运动,则其在t=1时的瞬时速度为6m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式
(2)如何由函数y=2sinx的图象通过适当的变换得到函数f(x)的图象,写出变换过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列圆的标准方程:
(1)圆心是(4,-1),且过点(5,2);
(2)圆心在y轴上,半径长为5,且过点(3,-4);
(3)求过两点C(-1,1)和D(1,3),圆心在x轴上的圆的标准方程.

查看答案和解析>>

同步练习册答案