精英家教网 > 高中数学 > 题目详情

设数列{an}的各项都是正数,且对任意n∈N*,都有+…+,记Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若bn=3n+(-1)n-1λ·2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn.

(1)ann(2)存在整数λ=-1

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn¨对恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,,其前n项和为,等比数列的各项均为正数,,公比为q,且.
(1)求
(2)设数列满足,求的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设无穷数列的首项,前项和为),且点在直线上(为与无关的正实数).
(1)求证:数列)为等比数列;
(2)记数列的公比为,数列满足,设,求数列的前项和
(3)若(2)中数列{Cn}的前n项和Tn时不等式恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知单调递增的等比数列{an}满足:
a2a3a4=28,且a3+2是a2a4的等差中项.
(1)求数列{an}的通项公式an
(2)令bnanloganSnb1b2+…+bn,求使Snn·2n+1>50成立的最小的正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列和等比数列中,项和.
(1)若,求实数的值;
(2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由;
(3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列的各项均为正数,且.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的每一项都是正数,,,且成等差数列,成等比数列,.
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)证明:对一切正整数,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是公差大于零的等差数列,已知.
(Ⅰ)求的通项公式;
(Ⅱ)设是以函数的最小正周期为首项,以为公比的等比数列,求数列的前项和.

查看答案和解析>>

同步练习册答案