【题目】已知斜三棱柱的侧面与底面垂直,,,且,,求:
(1)侧棱与底面所成角的大小;
(2)求点到平面的距离.
【答案】(1)(2)
【解析】
(1)由已知得直线在底面内的射影为直线,得为侧棱与底面所成的角,由此能求出侧棱与底面所成角的大小.
(2)求点到平面的距离也是求点到平面的距离,再用等体积法,求出三棱锥的高就是求出点到平面的距离.
解:(1)取中点,连接
∵平面平面平面平面,
又因为,所以又平面,
∴平面,
∴为在平面上的射影,所以为与平面所成的角
∵且,∴为等腰直角三角形,
∴
所以与平面所成的角为。
(2)取中点,中点,连接
∵∴平面∴且
∴平面∴∴
在直角三角形中,由,得
∴∴
设点到平面得距离为,
∵平面,∴到平面得距离与到平面的距离相等,
∵平面∴平面∴到平面的距离为,
由,得……①
而,,
将数据代入①式得,,
即到平面的距离为。
故得解.
科目:高中数学 来源: 题型:
【题目】如图(示意),公路AM、AN围成的是一块顶角为钝角α的角形耕地,其中.在该块土地中处有一小型建筑,经测量,它到公路、的距离、分别为,.现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.设,,其中.
(1)试建立间的等量关系;
(2)为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某民营企业生产A,B两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图甲,B产品的利润y与投资x的算术平方根成正比,其关系如图乙注:利润与投资单位为万元
分别将A,B两种产品的利润y表示为投资x的函数关系式;
该企业已筹集到10万元资金,并全部投入A,B两种产品的生产问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汕头某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配,每辆甲型货车的运输费用是400元,可装空调20台,每辆乙型货车的运输费用是300元,可装空调10台,若每辆车至多运一次,则企业所花的最少运费为( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(1) 判断的奇偶性并证明;
(2) 令
①判断在的单调性(不必说明理由);
②是否存在,使得在区间的值域为?若存在,求出此时的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com