精英家教网 > 高中数学 > 题目详情

(理) 已知向量数学公式=(2,-1,3),数学公式=(-1,4,-2),数学公式=(7,0,λ),若数学公式数学公式数学公式三个向量共面,则实数λ=________.

10
分析:根据所给的三个向量的坐标,写出三个向量共面的条件,点的关于要求的两个方程组,解方程组即可.
解答:∵向量=(2,-1,3),=(-1,4,-2),=(7,0,λ),
三个向量共面,

∴(2,-1,3)=x(-1,4,-2)+y(7,0,λ),
∴2=-x+7y ①
-1=4x ②
3=-2x+λy ③
由②得x=-
代入①得y=
把x,y的值代入③得λ=10
故答案为:10.
点评:本题考查空间向量的共线向量和共面向量,本题解题的关键是写出三个向量之间的关系,转化成解方程组的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知向量
m
=(1,1),向量
n
和向量
m
的夹角为
4
,|
m
|=
2
m
n
=-1.
(1)求向量
n

(2)若向量
n
与向量
q
=(1,0)的夹角为
π
2
,向量
p
=(cosA,2cos2
C
2
),其中A、B、C为△ABC的内角a、b、c为三边,b2+ac=a2+c2,求|
n
+
p
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理) 已知向量
a
=(2cosφ,2sinφ)
φ∈(
π
2
,π)
,向量
b
=(0,-1)
,则向量
a
b
的夹角为(  )
A、φ
B、
π
2
+?
C、?-
π
2
D、
2
-?

查看答案和解析>>

科目:高中数学 来源: 题型:

(理) 已知向量
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(7,0,λ),若
a
b
c
三个向量共面,则实数λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知向量
a
=(3,5,-1),
b
=(2,2,3),
c
=(4,-1,-3),则向量2
a
-3
b
+4
c
的坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知向量
m
同时垂直于不共线向量
a
b
,若向量
n
=2
a
+
b
,则(  )
A、
m
n
B、
m
n
C、
m
n
既不平行也不垂直
D、以上三种情况均有可能

查看答案和解析>>

同步练习册答案