精英家教网 > 高中数学 > 题目详情

【题目】各项均为正数的等差数列{an}前n项和为Sn , 首项a1=3,数列{bn} 为等比数列,首项b1=1,且b2S2=64,b3S3=960.
(1)求an和bn
(2)设f(n)= (n∈N*),求f(n)最大值及相应的n的值.

【答案】
(1)解:设等差数列{an}的公差为d,等比数列{bn}的公比为q,则d>0,

依题意: ,解得 (舍).

∴an=2n+1,


(2)解:∵Sn=n(n+2),

∴f(n)= =

当且仅当n= ,即n=10时取等号.

∴当n=10时,所求最小值为


【解析】(1)设出等差数列的公差和等比数列的公比,由已知列式求得等差数列的公差和等比数列的公比,则an和bn可求;(2)把等差数列{an}的通项和前n项和为Sn代入f(n)= ,整理后利用基本不等式求得f(n)最大值及相应的n的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,棱柱ABCD﹣A1B1C1D1的底面是菱形.侧棱长为5,平面ABCD⊥平面A1ACC1 , AB=3 ,∠BAD=60°,点E是△ABD的重心,且A1E=4.
(1)求证:平面A1DC1∥平面AB1C;
(2)求二面角B1﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,AB=AC=1,AA1=2,且P,Q,M分别是BB1 , CC1 , B1C1的中点,AB⊥AQ.

(1)求证:AB⊥AC;
(2)求证:AQ∥平面A1PM;
(3)求AQ与平面BCC1B1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=3,n(an+1﹣an)=an+1,n∈N*若对于任意的a∈[﹣1,1],n∈N* , 不等式 ﹣2at+1恒成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷水的高度,某人在喷水柱正西方向的点A测的水柱顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B.在B点测得水柱顶端的仰角为30°,则水柱的高度是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=3,a2=5,其前n项和为Sn满足Sn+Sn2=2Sn1+2n1(n≥3,n∈N*)
(1)试求数列{an}的通项公式
(2)令bn= ,Tn是数列{bn}的前n项和.证明:对任意给定的m∈(0, ),均存在n0∈N*,使得当n≥n0时,Tn>m恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钝角△OAB三边的比为2 :2 :( ),O为坐标原点,A(2,2 )、B(a,a),则a的值为(
A.2
B.
C.2
D. +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆内接△ABC,A,B,C所对的边分别为a,b,c,满足acosC+ccosA=2bcosB.
(1)求B的大小;
(2)若点D是劣弧 上一点,AB=3,BC=2,AD=1,求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(﹣2,1), =(3,﹣4).
(1)求( + )(2 )的值;
(2)求向量 + 的夹角.

查看答案和解析>>

同步练习册答案