精英家教网 > 高中数学 > 题目详情

【题目】,若,求证:

(1)方程有实根.

(2)若﹣2<<﹣1且设x1,x2是方程f(x)=0的两个实根,则≤|x1﹣x2|<

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(Ⅰ)针对a进行分类讨论,当a=0,f(0)f(1)≤0显然与条件矛盾,当a≠0时,f(x)=3ax2+2bx+c为二次函数,只需考虑判别式大于等于零即可;

(Ⅱ)利用根与系数的关系将(x1﹣x22转化成关于的二次函数,根据的范围求出值域即可.

试题解析:

证明:(1)若a=0,则b=﹣c,

f(0)f(1)=c(3a+2b+c)=﹣c2≤0,

与已知矛盾,所以a≠0.

方程3ax2+2bx+c=0的判别式△=4(b2﹣3ac),

由条件a+b+c=0,消去b,得△=4(a2+c2﹣ac)=

故方程f(x)=0有实根.

(2)由条件,知

所以(x1﹣x22=(x1+x22﹣4x1x2=

因为﹣2<<﹣1所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 平面 ,且 的中点.

Ⅰ)求证:

Ⅱ)求平面与平面所成的锐二面角的余弦值.

Ⅲ)在棱上是否存在一点,使得直线与平面所成的角是.若存在,指出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是为参数, ).

(1)求曲线的直角坐标方程;

(2)设直线与曲线交于两点,且线段的中点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,证明:

(Ⅱ)当,且时,不等式成立,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站针对2015年中国好声音歌手A,B,C三人进行网上投票,结果如下

观众年龄

支持A

支持B

支持C

20岁以下

100

200

600

20岁以上(含20岁)

100

100

400


(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取5人作为一个总体,从这5人中任意选取2人,求恰有1人在20岁以下的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了了解今年高中毕业生的体能状况,从某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0(精确到0.1)以上的为合格.数据分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.040.100.140.280.30 .6小组的频数是7.

I)求这次铅球测试成绩合格的人数;

II)若参加测试的学生中9人成绩优秀,现要从成绩优秀的学生中,随机选出2人参加毕业运动会,已知学生的成绩均为优秀,求两人至少有1人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,(其中是自然对数的底数).

(1) 使得不等式成立,试求实数的取值范围.

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某正三棱柱的三视图如图所示,其中正(主)视图是边长为的正方形,该正三棱柱的表面积是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知四棱锥P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:

(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

同步练习册答案