【题目】已知椭圆C:(a>b>0),左、右焦点分别为F1(﹣1,0),F2(1,0),椭圆离心率为,过点P(4,0)的直线l与椭圆C相交于A、B两点(A在B的左侧).
(1)求椭圆C的方程;
(2)若B是AP的中点,求直线l的方程;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
科目:高中数学 来源: 题型:
【题目】已知为圆上一动点,在轴,轴上的射影分别为点,,动点满足,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线与曲线交于,两点,判断以为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为为参数且,,,曲线的参数方程为为参数),以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程及的直角坐标方程;
(2)若曲线与曲线分别交于点,,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为为参数且,,,曲线的参数方程为为参数),以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程及的直角坐标方程;
(2)若曲线与曲线分别交于点,,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)若,求直线以及曲线的直角坐标方程;
(2)若直线与曲线交于两点,且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线的准线与轴交于椭圆的右焦点为的左焦点.椭圆的离心率为,抛物线与椭圆交于轴上方一点,连接并延长其交于点, 为上一动点,且在之间移动.
(1)当取最小值时,求和的方程;
(2)若的边长恰好是三个连续的自然数,当面积取最大值时,求面积最大值以及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若曲线在x=1处的切线为y=2x-3,求实教a,b的值.
(2)若a=0,且-2对一切正实数x值成立,求实数b的取值范围.
(3)若b=4,求函数的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )
A.28B.56C.84D.120
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com