精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:x2+y2﹣2x+4my+4m2=0,圆C1:x2+y2=25,以及直线l:3x﹣4y﹣15=0.
(1)求圆C1:x2+y2=25被直线l截得的弦长;
(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;
(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P(2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.

【答案】解:(1)因为圆的圆心O(0,0),半径r=5,
所以,圆心O到直线l:3x﹣4y﹣15=0的距离d:,由勾股定理可知,
被直线l截得的弦长为
(2)圆C与圆C1的公共弦方程为2x﹣4my﹣4m2﹣25=0,
因为该公共弦平行于直线3x﹣4y﹣15=0,

解得:m=
经检验m=符合题意,故所求m=
(3)假设这样实数m存在.
设弦AB中点为M,由已知得|AB|=2|PM|,即|AM|=|BM|=|PM|
所以点P(2,0)在以弦AB为直径的圆上.
设以弦AB为直径的圆方程为:x2+y2﹣2x+4my+4m2+λ(3x﹣4y﹣15)=0,

消去λ得:100m2﹣144m+216=0,25m2﹣36m+54=0
因为△=362﹣4×25×54=36(36﹣25×6)<0
所以方程25m2﹣36m+54=0无实数根,
所以,假设不成立,即这样的圆不存在.
【解析】(1)根据直线和圆相交的弦长公式即可求圆C1:x2+y2=25被直线l截得的弦长;
(2)求出两圆的公共弦结合直线平行的条件即可求出直线l;
(3)根据两点间的距离公式结合弦长关系即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面为正三角形, 底面 的中点.

(1)求证: 平面

(2)求证:平面平面

3)在侧棱上是否存在一点使得三棱锥的体积是若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一条生产线上按同样的方式每隔30分钟取一件产品,共取了n件,测得其产品尺寸后,画得其频率分布直方图如图所示,已知尺寸在[15,45)内的频数为46.
(1)该抽样方法是什么方法?
(2)求n的值;
(3)求尺寸在[20,25)内的产品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市出租车的计价标准是:4km以内(含4km)10元,超过4km且不超过18km的部分1.2元/km,超过18km的部分1.8元/km,不计等待时间的费用.
(1)如果某人乘车行驶了10km,他要付多少车费?
(2)试建立车费y(元)与行车里程x(km)的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)证明f(x)是奇函数;
(2)判断f(x)的单调性,并用定义证明
(3)求f(x)在[1,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为,离心率.过的直线交椭圆于两点,三角形的周长为.

(1)求椭圆的方程;

(2)若弦,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为),上一点,以为边作等边三角形,且三点按逆时针方向排列.

(Ⅰ)当点上运动时,求点运动轨迹的直角坐标方程;

(Ⅱ)若曲线 ,经过伸缩变换得到曲线,试判断点的轨迹与曲线是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙C经过点两点,且圆心C在直线上.

(1)求⊙C的方程;

(2)若直线与⊙C总有公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面是直角梯形, 的中点.

1)求证:平面平面

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案