精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若时,求的交点坐标;

(2)若上的点到距离的最大值为,求.

【答案】(1);(2).

【解析】试题分析:(1)根据参数方程、极坐标方程与直角坐标方程的互化,求得曲线的直角坐标方程,联立方程组,即可求解交点的坐标;

(2)由曲线的参数方程,设上的点,求得点到的距离,根据三角函数的图象与性质,得出的最大值,从而的值.

试题解析:

(1)曲线的普通方程为

时,直线的普通方程为

,解得,或

从而的交点坐标为.

(2)直线的普通方程为

的参数方程为为参数),

上的点的距离为

.

时,的最大值为

由题设得,所以

时,的最大值为

由题设得,所以

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在经济学中,函数的边际函数为,定义为,某公司每月最多生产台报警系统装置,生产台的收入函数为(单位元),其成本函数为(单位元),利润等于收入与成本之差.

求出利润函数及其边际利润函数

求出的利润函数及其边际利润函数是否具有相同的最大值.

(Ⅲ)你认为本题中边际利润函数最大值的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

映射不一定是函数,但函数一定是其定义域到值域的映射;

函数的反函数是,则

函数的最小值是

对于函数,则既是奇函数又是偶函数.

其中所有正确命题的序号是( ).

A.①③B.②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(简称:)是定量描述空气质量状况的无量纲指数,空气质量按照大小分为六级:为优,为良,为轻度污染,为中度污染,为重度污染,为严重污染.下面记录了北京市天的空气质量指数,根据图表,下列结论错误的是( )

A. 在北京这天的空气质量中,按平均数来考察,最后天的空气质量优于最前面天的空气质量 B. 在北京这天的空气质量中,有天达到污染程度

C. 在北京这天的空气质量中,12月29日空气质量最好 D. 在北京这天的空气质量中,达到空气质量优的天数有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,求的极值;

(2)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论

(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.

(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.

(3)若两个变量的线性相关性越强,则相关系数的值越接近于1.

(4)对ABC三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.

则正确的个数是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出函数如下表,则f〔g(x)〕的值域为( )

x

1

2

3

4

g(x)

1

1

3

3

x

1

2

3

4

f(x)

4

3

2

1

A. {4,2} B. {1,3} C. {1,2,3,4} D. 以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点作抛物线的两条切线,切点分别为,直线的斜率为2.

(1)求抛物线的标准方程;

(2)与圆相切的直线,与抛物线交于两点,若在抛物线上存在点,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的单调区间;

(2)若,存在,使得,求实数的取值范围.

查看答案和解析>>

同步练习册答案