分析 (1)先将cos(x+$\frac{π}{6}$)展开,然后借助于辅助角公式化简,求解函数的周期;
(2)根据x的范围求出2x+$\frac{π}{6}$的范围,结合三角函数的图象与性质求出最值.
解答 解:(1)f(x)=4sinxcosxcos$\frac{π}{6}$-4sin2xsin$\frac{π}{6}$+1
=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$).
∴f(x)的最小正周期是$\frac{2π}{2}$=π.
(2)∵x∈[-$\frac{π}{4},\frac{π}{3}$],∴2x+$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{5π}{6}$],
∴当2x+$\frac{π}{6}$=-$\frac{π}{3}$时,f(x)取得最小值-$\sqrt{3}$,
当2x+$\frac{π}{6}$=$\frac{π}{2}$时,f(x)取得最大值2.
点评 本题综合考查三角公式,三角恒等变换等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 必要不充分条件 | B. | 充分不必要条件 | ||
C. | 既不充分也不必要条件 | D. | 充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com