精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且满足a1=
1
2
,an=-2Sn•Sn-1 (n≥2且n∈N*).
(Ⅰ)求证:数列{
1
Sn
}是等差数列;   
(Ⅱ)求Sn和an
考点:数列递推式,等差关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由数列递推式结合an=Sn-Sn-1可得
1
Sn
-
1
Sn-1
=2
,即可说明数列{
1
Sn
}是等差数列;
(Ⅱ)由数列{
1
Sn
}是等差数列求其通项公式,进一步得到Sn=
1
2n
.然后由当n≥2时,an=Sn-Sn-1=-
1
2n(n-1)
求得数列的通项公式.
解答: (Ⅰ)证明:当n≥2时,an=Sn-Sn-1=-2SnSn-1,①
∴Sn(1+2Sn-1)=Sn-1,由上式知若Sn-1≠0,则Sn≠0.
∵S1=a1≠0,由递推关系知Sn≠0(n∈N*)
∴由①式可得:当n≥2时,
1
Sn
-
1
Sn-1
=2

∴{
1
Sn
}是等差数列,其中首项为
1
S1
=
1
a1
=2
,公差为2;
(Ⅱ)解:∵
1
Sn
=
1
S1
+2(n-1)=
1
a1
+2(n-1)
,∴Sn=
1
2n

当n≥2时,an=Sn-Sn-1=-
1
2n(n-1)

当n=1时,a1=S1=
1
2
不适合上式,
an=
1
2
,(n=1,n∈N*)
-
1
2n(n-1)
,(n≥2,n∈N*)
点评:本题考查了数列递推式,考查了等差关系的确定,训练了由数列的前n项和求数列的通项公式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

企业为了研究员工工作积极性和对待企业改革态度的关系,随机抽取了189名员工进行调查,其中支持企业改革的调查者中,工作积极的54人,工作一般的32人,而不太赞成企业改革的调查者中,工作积极的有40人,工作一般的63人.
(1)根据以上数据建立一个2×2的列联表;?
(2)对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的态度与其工作积极性是否有关系??

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,AC=1,点D为BC中点,
AE
=a
AB
AF
=b
AC
,且a+b=ab,直线EF与直线AD相交于点P,则
AP
2
+
BC
2
AP
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax2+2x-3+m(a>1)恒过定点(1,10),则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算r:r(xn)=nxn-1,r(c)=0,r(cx)=cr(x)(c为常数),r(x+y)=r(x)+r(y),若3x2•f(x)+x3•r[f(x)]=5x4+2x3-3x2,f(x)为多项式函数,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点与抛物线y2=16x的焦点重合,且双曲线
x2
a2
-
y2
b2
=1上有一点到一个焦点的距离比到另一焦点的距离大4,则(  )
A、b=4
B、b=2
3
C、b=4
3
D、b=2
15

查看答案和解析>>

科目:高中数学 来源: 题型:

五名学生报名参加两项体育比赛,每人限报一项,报名方法的种数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为一次函数,且满足4f(1-x)-2f(x-1)=3x+18,求函数f(x)在[-1,1]上的最大值,并比较f(2011)与f(2012)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙3人站到共有5级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数有
 
种.(用数字作答.)

查看答案和解析>>

同步练习册答案