精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)若关于的方程有唯一实数解,且,求的值.

【答案】(1)见解析(2)

【解析】

1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;

2)设hx)=lnxex+axax0),求出函数的导数,根据函数的单调性求出n的值即可.

(1)

时,上单调递增;

时,时,,单调递减,时,,单调递增.

综上所述:时,函数上单调递增;

时,函数上单调递减,函数上单调递增.

(2)由己知可得方程有唯一解,且

,即有唯一解

,则上单调递减.

所以上单调递减,即单调递减.

时,时,

故存在使得

时,上单调递增

时,上单调递减.

有唯一解,则必有

时,,故存在唯一的满足下式:

消去.

故当时,上单调递减,

时,上单调递增.

.

即存在,使得,即.

又关于的方程有唯一实数解,且

..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,分别记录了31日到35日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期

31

32

33

34

35

温差

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

他们所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对选取的2组数据进行检验.

1)求选取的2组数据恰好是相邻2天数据的概率;

2)若选取的是31日与35日的两组数据,请根据32日至34日的数据,求出y关于x的线性回归方程;并预报当温差为时的种子发芽数.

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程;

(2)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中a为常数:e≈2.71828为自然对数的底数.

1)求曲线yfx)在x0处的切线l在两坐标轴上的截距相等,求a的值;

2)若x0,不等式恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用传统教学高效课堂两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于70分为成绩优良”.

1)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过的前提下认为成绩优良与教学方式有关

甲班

乙班

总计

成绩优良

成绩不优良

总计

2)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,记来自甲班的人数为,求的分布列与数学期望.

附:(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面为等边三角形,,点的中点.

1)求证:平面PAD

2)求二面角PBCD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知个实数若有穷数列由数列的项重新排列而成,且下列条件同时成立:① 个数两两不同;②当时,都成立,则称的一个友数列.

(1)若写出的全部“友数列

(2)已知是通项公式为的数列的一个“友数列,且(用表示);

(3)设求所有使得通项公式为的数列不能成为任何数列的“友数列”的正实数的个数(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的极值;

2)若时,的单调性相同,求的取值范围;

3)当时,函数有最小值,记的最小值为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为4,点P(2,3)在椭圆上.

(1)求椭圆C的方程;

(2)过点P引圆的两条切线PAPB,切线PAPB与椭圆C的另一个交点分别为AB试问直线AB的斜率是否为定值?若是,求出其定值,若不是,请说明理由.

查看答案和解析>>

同步练习册答案