精英家教网 > 高中数学 > 题目详情
直线与椭圆相交于两点,为坐标原点.
(Ⅰ)当点的坐标为,且四边形为菱形时,求的长;
(Ⅱ)当点上且不是的顶点时,证明:四边形不可能为菱形.
利用椭圆的对称性,结合图形完成第(I)小题.设出直线方程,把直线方程和椭圆方程联立,设而不求,结合菱形的特点进行判断.
(I) 椭圆W:的右顶点,因为四边形OABC为菱形,所以互相垂直平分.
所以可设,代入椭圆方程得,解得.
所以菱形OABC的面积为.
(II)假设四边形OABC为菱形.
因为点B不是W的顶点,且直线AC不过原点,所以可设AC的方程为y=kx+m,k≠0,m≠0..
消去y并整理得.
,则
所以AC的中点.
因为M为AC和OB的交点,所以直线OB的斜率为.
因为,所以AC和OB不垂直.
所以四边形OABC不是菱形,与假设矛盾.
所以当B不是W的顶点,四边形OABC不可能是菱形.
【考点定位】本题考查了椭圆的性质和直线与椭圆的位置关系.通过整体代换,设而不求,考查了数据处理能力和整体思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:(a>0,b>0)的左、右焦点分别为,离心率为3,直线y=2与C的两个交点间的距离为.
(Ⅰ)求a,b;
(Ⅱ)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:成等比数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知,其中.设直线的交点为,求动点的轨迹的参数方程(以为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左焦点为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直接坐标系中,直线的方程为,曲线的参数方程为为参数).
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.

(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为.
①求四边形APBQ面积的最大值;
②设直线PA的斜率为,直线PB的斜率为,判断+的值是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点坐标是 (    )
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)

查看答案和解析>>

同步练习册答案