精英家教网 > 高中数学 > 题目详情

【题目】为加快新能源汽车产业发展,推进节能减排,国家鼓励消费者购买新能源汽车.某校研究性学习小组从汽车市场上随机选取了M辆纯电动乘用车.根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

分组

频数

频率

80≤R<150

10

150≤R<250

30

x

R≥250

y

z

合计

M

1

(1)求x,y,z,M的值;

(2)若用分层抽样的方法从这M辆纯电动乘用车中抽取一个容量为6的样本,从该样本中任选2辆,求选到的2辆车续驶里程为150≤R<250的概率.

【答案】(1) 见解析.(2).

【解析】

试题分析:(1)根据频数分布表,可求得x,y,z,M的值;(2)列举出样本中任选2辆共有15种取法,找到满足条件的基本事件,再利用古典概型的概率的求法解得即可.

试题解析:(1)由表格可知,

所以M=60,x=,y=60-10-30=20,z=.

(2)设从这6辆纯电动车中任选2辆,选到的2辆车续驶里程为150≤R<250”为事件D,由分层抽样得在80≤R<150中抽1辆,记为A,在150≤R<250中抽3辆,记为B1,B2,B3,在R≥250中抽2辆,记为C1,C2,则任取两辆共有15种取法:(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B2,B3),(B1,C1),(B1,C2),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2),事件D有3种情况,则P(D)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足则该数列的前18项和为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,如果同时满足以下三条:对任意的,总有,都有成立,则称函数为理想函数.

(1) 若函数为理想函数,求的值;

(2)判断函数是否为理想函数,并予以证明;

(3) 若函数为理想函数,假定,使得,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离,倾斜角

的直线经过焦点,且与抛物线交于两点.

(1)求抛物线的标准方程及准线的方程;

(2)若为锐角,作线段的垂直平分线轴于点,证明为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校团委组织了文明出行,爱我中华的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为.

1)求成绩在的频率,并补全此频率分布直方图;

2)求这次考试平均分的估计值;

3)若从成绩在的学生中任选两人,求他们的成绩在同一分组区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求的值域

)若对于内的所有实数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=f(x)+m,若函数g(x)恰有三个不同零点,则实数m的取值范围为(
A.(1,10)
B.(﹣10,﹣1)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=sinxcosx﹣cos2(x+ ).
(1)求f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f( )=0,a=1,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案