精英家教网 > 高中数学 > 题目详情
7.若三棱锥P-ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为$\frac{1}{2}$,则三棱锥P-ABC的外接球的体积为(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{4}$

分析 利用AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为$\frac{1}{2}$,求出PA=$\sqrt{2}$,三棱锥P-ABC扩充为长方体,则长方体的对角线长为$\sqrt{2+1+1}$=2,可得三棱锥P-ABC的外接球的半径为1,即可得出结论.

解答 解:∵AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为$\frac{1}{2}$,
∴PA=$\sqrt{2}$,
三棱锥P-ABC扩充为长方体,则长方体的对角线长为$\sqrt{2+1+1}$=2,
∴三棱锥P-ABC的外接球的半径为1,
∴三棱锥P-ABC的外接球的体积为$\frac{4π}{3}$,
故选A.

点评 本题考查三棱锥P-ABC的外接球的体积,考查线面垂直,线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{5}}{3}$,椭圆上一点P到两焦点距离之和为12,则椭圆短轴长为(  )
A.8B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,BC=7,AC=6,cosC=$\frac{{2\sqrt{6}}}{7}$.若动点P满足$\overrightarrow{AP}$=(1-λ)$\overrightarrow{AB}$+$\frac{2λ}{3}$$\overrightarrow{AC}$,(λ∈R),则点P的轨迹与直线BC,AC所围成的封闭区域的面积为(  )
A.5B.10C.2$\sqrt{6}$D.4$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Asin(ωx+φ)+b($A>0,ω>0,|φ|<\frac{π}{2}$)的图象上相邻的一个最大值点与对称中心分别为($\frac{π}{18}$,3)、$(\frac{2π}{9},0)$,则函数f(x)的单调增区间为(  )
A.($\frac{2kπ}{3}-\frac{π}{9}$,$\frac{2kπ}{3}+\frac{2π}{9}$),k∈ZB.($\frac{2kπ}{3}$-$\frac{4π}{9}$,$\frac{2kπ}{3}$-$\frac{π}{9}$),k∈Z
C.($\frac{2kπ}{3}$+$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{7π}{18}$),k∈ZD.($\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}-\frac{π}{18}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=-\frac{1}{a}+\frac{2}{x}(x>0)$
(1)判断f(x)在(0,+∞)上的增减性,并证明你的结论    
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.心理健康教育老师对某班50个学生进行了心里健康测评,测评成绩满分为100分.成绩出来后,老师对每个成绩段的人数进行了统计,并得到如图4所示的频率分布直方图.
(1)求a,并从频率分布直方图中求出成绩的众数和中位数;
(2)若老师从60分以下的人中选两个出来与之聊天,则这两人一个在(40,50]这一段,另一个在(50,60]这一段的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,如果a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),则△ABC最小角为(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在某校趣味运动会的颁奖仪式上,为了活跃气氛,大会组委会决定在颁奖过程中进行抽奖活动,用分层抽样的方法从参加颁奖仪式的高一、高二、高三代表队中抽取20人前排就座,其中高二代表队有5人.
(1)把在前排就座的高二代表队5人分别记为a,b,c,d,e,现从中随机抽取3人上台抽奖,求a和b至少有一人上台抽奖的概率;
(2)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖.求该代表中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x,y∈R且2x+2y=1,则x+y的取值范围为(-∞,-2].

查看答案和解析>>

同步练习册答案