精英家教网 > 高中数学 > 题目详情

【题目】某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为

1

2

3

4

5

P

0.4

0.2

0.2

0.1

0.1

商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,X表示经销一件该商品的利润.

1)求事件A购买该商品的3位顾客中,至少有1位采用1期付款的概率

2)求X的分布列及期望.

【答案】10.7842)见解析,240

【解析】

1)先求得事件的对立事件的概率,即可求得事件的概率;

2)根据题意,求得的取值,根据题意,求得分布列和数学期望.

1)由A表示事件购买该商品的3位顾客中至少有1位采用1期付款

表示事件购买该商品的3位顾客中无人采用1期付款

,则.

2X的可能取值为200元,250元,300元,

X的分布列为

X

200

250

300

P

0.4

0.4

0.2

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼奥斯在他的著作《圆锥曲线论》中记载了用平面切制圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径为1,母线长均为,记过圆锥轴的平面ABCD为平面与两个圆锥面的交线为ACBD),用平行于的平面截圆锥,该平面与两个圆锥侧面的截线即为双曲线E的一部分,且双曲线E的两条渐近线分别平行于ACBD,则双曲线E的离心率为(

A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若处的切线为

(Ⅰ)求实数的值;

(Ⅱ)若不等式对任意恒成立,求的取值范围;

(Ⅲ)设其中,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求a

(2)证明:存在唯一的极大值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高速公路全程设有2n(n4)个服务区.为加强驾驶人员的安全意识,现规划在每个服务区的入口处设置醒目的宣传标语A或宣传标语B.

1)若每个服务区入口处设置宣传标语A的概率为,入口处设置宣传标语B的服务区有X个,求X的数学期望;

2)试探究全程两种宣传标语的设置比例,使得长途司机在走该高速全程中,随机选取3个服务区休息,看到相同宣传标语的概率最小,并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(其中为参数),以原点为极点,以轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

)求曲线的普通方程与曲线的直角坐标方程;

)设点分别是曲线上两动点且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(其中为参数),以原点为极点,以轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

)求曲线的普通方程与曲线的直角坐标方程;

)设点分别是曲线上两动点且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和所支出的维修费用 y(万元),有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由资料可知yx呈线性相关关系,且线性回归方程为ya+bx,其中已知b=1.23,请估计使用年限为20年时,维修费用约为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,DEF分别为线段的中点.

1)证明:平面

2)证明:平面.

查看答案和解析>>

同步练习册答案