精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=ax2+bx+c(a>0),
(1)当a=1,b=2,若|f(x)|﹣2=0有且只有两个不同的实根,求实数c的取值范围;
(2)设方程f(x)=x的两个实根为x1 , x2 , 且满足0<t<x1 , x2﹣x1 ,试判断f(t)与x1的大小,并给出理由.

【答案】
(1)解:∵当a=1,b=2,∴f(x)=x2+2x+c=(x+1)2+c﹣1

∴﹣2<c﹣1<2

∴﹣1<c<3


(2)解:方程f(x)=x,即ax2+(b﹣1)x+c=0,

由题意得

(1)

∴ax1+ax2=1﹣b,即ax1+b=1﹣ax2代入 (1)得

∵0<t<x1,∴t﹣x1<0,∵0<t<x1

∴at﹣ax2+1<ax1﹣ax2+1,

,∴ax1﹣ax2<﹣1,即at﹣ax2+1<ax1﹣ax2+1<0.

所以f(t)>x1


【解析】(1)由f(x)的解析式得到最小值c﹣1,由|f(x)|﹣2=0有且只有两个不同的实根,得到不等式﹣2<c﹣1<2,由此得到c的取值范围.(2)由方程f(x)=x的两个实根为x1 , x2 , 由韦达定理得到两个根的差的范围,用做差来判断两数的大小.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,为正方体,给出以下五个结论:

平面

⊥平面

与底面所成角的正切值是

二面角的正切值是

过点且与异面直线 均成70°角的直线有4条.

其中,所有正确结论的序号为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内圆心为的圆的方程为,点是圆上的动点,点是平面内任意一点,若线段的垂直平分线交直线于点,则点的轨迹可能是_________.(请将下列符合条件的序号都填入横线上)

①椭圆;②双曲线;③抛物线;④圆;⑤直线;⑥一个点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a2=3对任意n∈N* , an+2≤an+32n , an+1≥2an+1都成立,则a2016=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知曲线,将曲线上所有点横坐标,纵坐标分别伸长为原来的倍和倍后,得到曲线

(1)试写出曲线的参数方程;

(2)在曲线上求点,使得点到直线的距离最大,并求距离最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 若a,b,c,d各不相同,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围是(
A.(24,25)
B.[16,25)
C.(1,25)
D.(0,25]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a和b是计算机在区间(0,2)上产生的均匀随机数,则一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,.

(1)求△ABM与△ABC的面积之比;

(2)若N为AB中点,交于点P,且 (x,y∈R),求x+y的值.

查看答案和解析>>

同步练习册答案