精英家教网 > 高中数学 > 题目详情
是等腰三角形,=,则以为焦点且过点的双曲线的离心率为
A.B.C.D.
B 由题意知设焦距为2c,则|AB|=2c,|BC|=2c,则|AC|=2|AB|cos30°=,
所以由双曲线的定义知,,故选B.

分析:根据题设条件可知2c=|BC|,所以|AC|=2×2c×sin600="2" c,由双曲线的定义能够求出2a,从而导出双曲线的离心率.
解:由题意2c=|BC|,所以|AC|=2×2c×sin600=2c,由双曲线的定义,有2a=|AC|-|BC|=2c-2c?a=(-1)c,

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点
(Ⅰ)求椭圆的方程;
(Ⅱ)证明以线段为直径的圆经过焦点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆,直线过椭圆左焦点且不与轴重合, 与椭圆交于,两点,当轴垂直时,,若点
(1)求椭圆的方程;
(2)直线绕着旋转,与圆交于两点,若,求的面积 的取值范围(为椭圆的右焦点)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是椭圆上的动点,为椭圆的两个焦点,是坐标原点,若的角平分线上一点,且,则的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,它与直线相交于P、Q两点,若,求椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2是椭圆的左、右焦点,点P在椭圆上,且记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1: 2,则该椭圆的离心率等于   (       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆C的中心O在原点,长轴在x轴上,焦距为,短轴长为8,
(1)求椭圆C的方程;
(2)过点作倾斜角为的直线交椭圆C于A、B两点,求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线过点,且与椭圆相切于点
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线与曲线相交于不同的两点,曲线在点处的切线交于点.试问:点是否在某一定直线上,若是,试求出定直线的方程;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆的不垂直于对称轴的弦,的中点,为坐标原点,则____________

查看答案和解析>>

同步练习册答案