精英家教网 > 高中数学 > 题目详情
11.若双曲线上存在点P,使得P到两个焦点的距离之比为2:1,则称此双曲线存在“L点”,下列双曲线中存在“L点”的是(  )
A.${x^2}-\frac{y^2}{4}=1$B.${x^2}-\frac{y^2}{9}=1$C.${x^2}-\frac{y^2}{15}=1$D.${x^2}-\frac{y^2}{24}=1$

分析 验证四个答案中哪一个符合题干中的条件:存在点P,使得点P到两个焦点的距离之比为2:1.

解答 解:若双曲线的方程为x2-$\frac{{y}^{2}}{4}$=1
则双曲线的两个焦点为F1(-$\sqrt{5}$,0)、F2($\sqrt{5}$,0).
设P(x,y)则
|PF1|2=(x+$\sqrt{5}$)2+y2
|PF2|2=(x-$\sqrt{5}$)2+y2
∴(x+$\sqrt{5}$)2+y2=4[(x-$\sqrt{5}$)2+y2]②
又x2-$\frac{{y}^{2}}{4}$=1②
①②联立,解得
$\left\{\begin{array}{l}{x=\frac{9\sqrt{5}}{15}}\\{y=\frac{4\sqrt{5}}{5}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{9\sqrt{5}}{15}}\\{y=-\frac{4\sqrt{5}}{5}}\end{array}\right.$,
则存在点P($\frac{9\sqrt{5}}{15}$,$\frac{4\sqrt{5}}{5}$)或($\frac{9\sqrt{5}}{15}$,-$\frac{4\sqrt{5}}{5}$)使得|PF1|:|PF2|=2:1
即双曲线x2-$\frac{{y}^{2}}{4}$=1存在“L点”,
故选:A.

点评 本题考查新定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知电子发射管发射的电子是随机的从电子发射管射出的,当一束电子从电子发射管射出后随机的落在以2a为边长的正三角形屏幕的内切圆区域内,则电子落在该区域的概率是$\frac{\sqrt{3}}{9}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各式中,最小值为2的是(  )
A.$x+\frac{1}{x}$B.$\sqrt{{x^2}+2}+\frac{4}{{\sqrt{{x^2}+2}}}$C.$\frac{y}{x}+\frac{x}{y}$D.$x-2\sqrt{x}+3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:θ为第一象限角,$\overrightarrow{a}$=(sin(θ-π),1),$\overrightarrow{b}$=(sin($\frac{π}{2}$-θ),-$\frac{1}{2}$),
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\frac{sinθ+3cosθ}{sinθ-cosθ}$的值;
(2)若|$\overrightarrow{a}$+$\overrightarrow{b}$|=1,求sinθ+cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,已知$AB=\sqrt{3}$,$C=\frac{π}{3}$,则$\overrightarrow{CA}•\overrightarrow{CB}$的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|lnx|,设x1≠x2且f(x1)=f(x2).
(1)求$\frac{{{x_1}{x_2}-1}}{{({{x_1}-1})({{x_2}-1})}}$的值;
(2)若x1+x2+f(x1)+f(x2)>M对任意满足条件的x1,x2恒成立,求实数M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{\begin{array}{l}x{e^x}(x<0)\\-2x(x≥0)\end{array}\right.$,若函数g(x)=f(x)-m有3个零点,则m的取值范围是(-$\frac{1}{e}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F2,过F2作其中一条渐近线的垂线,分别交y轴和该渐近线于M,N两点,且$\overrightarrow{MN}$=3$\overrightarrow{N{F}_{2}}$,则$\frac{a}{b}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5,6},集合A={1,2,4},集合B={3,6},则∁U(A∪B)=(  )
A.{1,2,4}B.{1,2,4,5}C.{2,4}D.{5}

查看答案和解析>>

同步练习册答案