精英家教网 > 高中数学 > 题目详情
(2008•奉贤区模拟)设x1、x2∈R,则“x1>1且x2>1”是“x1+x2>2且x1x2>1”的(  )条件.
分析:利用不等式的性质得到若“x1>1且x2>1”成立,则有“x1+x2>2且x1x2>1”成立,利用举反例的方法判断出后者成立前者不一定成立,利用充要条件的有关定义得到结论.
解答:解:若“x1>1且x2>1”成立,则有“x1+x2>2且x1x2>1”成立
反之,当“x1+x2>2且x1x2>1”成立,不一定有“x1>1且x2>1”成立,
例如x1=10,x2=1满足“x1+x2>2且x1x2>1”不满足“x1>1且x2>1”
所以“x1>1且x2>1”是“x1+x2>2且x1x2>1”的充分不必要条件
故选A.
点评:判断应该命题是另一个命题的什么条件,应该先确定出条件,再试着两边互推一下,利用充要条件的有关定义得到判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知数列{an}的前n项和为Sn,若Sn=2n-1,则a7=
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=
x2+x-2
的定义域为
(-∞,-2]∪[1,+∞)
(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=x(1-x),x∈(0,1)的最大值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
x+y
2
∈D
均满足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)设函数g(x)=-x2,求证:g(x)∈M.
(3)已知函数f(x)=log2x∈M.试利用此结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求证:bn=
2
7
8n-
2
7

(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

同步练习册答案