精英家教网 > 高中数学 > 题目详情

【题目】已知在平面直角坐标系中,动点P到定点F(1,0)的距离比到定直线x=-2的距离小1.

1)求动点P的轨迹C的方程;

2)若直线l1)中轨迹C交于AB两点,通过A和原点O的直线交直线x=-1D,求证:直线DB平行于x.

【答案】1;(2)证明见解析.

【解析】

1)判断轨迹为抛物线,转化求解抛物线方程即可.

2)画出图形,设直线的方程为代入抛物线方程,设,取得的纵坐标,然后推出结果.

(1)解:动点的距离比到定直线的距离小,则与到定直线的距离相等,根据抛物线的定义可知,所求轨迹为以为焦点,直线为准线的抛物线,其方程为

(2)证明:设直线的方程为

②代入①,整理得

,则

所以点的纵坐标

因为,所以直线的方程为

可得的纵坐标为

由③⑤知,轴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:幂势既同,则积不容异”. 其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则相等总相等

A. 充分而不必要条件B. 必要而不充分条件

C. 充分必要条件D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若 轴垂直,且.

(1)求椭圆方程;

(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知多面体的直观图(图1)和它的三视图(图2),

1)在棱上是否存在点,使得平面?若存在,求的值,并证明你的结论;若不存在,说明理由;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中的人使用微信,其中每天使用微信时间少于一小时的有60人,其余的员工每天使用微信时间不少于一小时,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中是青年人.若规定:每天使用微信时间不少于一小时为经常使用微信,那么经常使用微信的员工中都是青年人.

1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,完成列联表:

青年人

中年人

合计

经常使用微信

不经常使用微信

合计

2)由列联表中所得数据判断,能否在犯错误的概率不超过的前提下认为“经常使用微信与年龄有关”?

0.010

0.001

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

(1)若数列是等差数列,求的值;

(2)当时,求数列的前项和

(3)若对任意,都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3+ax2+bx+cxx1时都取得极值,求ab的值与函数fx)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数.

(1)若,且函数在区间内单调递增,求实数的取值范围;

(2)若,试判断函数的零点个数.

查看答案和解析>>

同步练习册答案