精英家教网 > 高中数学 > 题目详情
椭圆
x2
9
+
y2
2
=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=______,∠F1PF2的大小为______.
∵|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=2.
在△F1PF2中,
cos∠F1PF2
=
|PF1|2+|PF2|2-|F1F2|2
2|PF1|•|PF2|

=
16+4-28
2×4×2
=-
1
2

∴∠F1PF2=120°.
故答案为:2;120°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设P是椭圆
x2
169
+
y2
144
=1
上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于(  )
A.22B.21C.20D.13

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
4
+
y2
3
=1
的两焦点为F1,F2,点P是椭圆内部的一点,则|PF1|+|PF2|的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆
x2
2
+
y2
3
=1的下焦点,且与圆x2+y2-3x+y+
3
2
=0相切的直线的斜率是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,若该椭圆上一点P满足|PF2|=|F1F2|,且以原点O为圆心,以b为半径的圆与直线PF1有公共点,则该椭圆离心率e的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,C为椭圆短轴上的端点,向量
FC
绕F点顺时针旋转90°后得到向量
FC′
,其中C′
点恰好落在椭圆右准线上,则该椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F到过顶点A(-a,0)、B(0,b)的直线的距离等于
7
7
b
,则椭圆的离心率为(  )
A.
1
2
B.
4
5
C.
7-
7
6
D.
7
7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线y2=4x的焦点F与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点重合,它们在第一象限内的交点为T,且TF与x轴垂直,则椭圆的离心率为(  )
A.
3
-
2
B.
2
-1
C.
1
2
D.
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的焦距为(    ).
A.1B.C.3D.

查看答案和解析>>

同步练习册答案