精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知数列的相邻两项是关于的方程N的两根,且.
(1) 求数列的通项公式;
(2) 设是数列的前项和, 问是否存在常数,使得对任意N都成立,若存在, 求出的取值范围; 若不存在, 请说明理由.

(1)。(2)

解析试题分析:(1) ∵是关于的方程N的两根,

,得
故数列是首项为,公比为的等比数列.
, 即. 所以
(2)
.、
要使对任意N都成立,
(*)对任意N都成立.
为正奇数时, 由(*)式得,
,∵, ∴对任意正奇数都成立.当且仅当时, 有最小值.      ∴.
② 当为正偶数时, 由(*)式得,
,∵,∴对任意正偶数都成立.
当且仅当时, 有最小值. ∴.            ……12分 
综上所述, 存在常数,使得对任意N都成立, 的取值范围是.
考点:数列通项公式的求法;数列前n项和的求法。
点评:本题主要考查用待定系数法求数列的通项公式和用分组求和法求数列的前n项和,属于常规题型。第二问主要体现了分类讨论的数学思想,属于难点。若已知递推式的形式求数列的通项公式,一般来说要在原递推式两边同除以来构造。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

下图是一个按照某种规律排列出来的三角形数阵

假设第行的第二个数为
(1)依次写出第七行的所有7个数字(不必说明理由);
(2)写出的递推关系(不必证明),并求出的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的通项公式为
(1)试求的值;
(2)猜想的值,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
对数列{an},规定{△an}为数列{an}的一阶差分数列,其中
对自然数k,规定为{an}的k阶差分数列,其中
(1)已知数列{an}的通项公式,试判断是否为等差或等比数列,为什么?
(2)若数列{an}首项a1=1,且满足,求数列{an}的通项公式。
(3)对(2)中数列{an},是否存在等差数列{bn},使得对一切自然都成立?若存在,求数列{bn}的通项公式;若不存在,则请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)数列的前项和.
(Ⅰ)求数列的通项公式;
(Ⅱ)设求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在数列中,,并且对于任意n∈N*,都有
(1)证明数列为等差数列,并求的通项公式;
(2)设数列的前n项和为,求使得的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知数列满足
(1)求证:数列为等差数列,并求数列通项公式;
(2) 数列的前项和为 ,令,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}满足4a1=1,an-1=[(-1)nan-1-2]an(n≥2),(1)试判断数列{1/an+(-1)n}是否为等比数列,并证明;(2)设an2?bn=1,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求Sn=(x+)+(x2+)+…+(xn+)(y)。

查看答案和解析>>

同步练习册答案