精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=lnx,g(x)=x2-2af(x)(a∈R且a≠0).
(1)若a=1,求函数g(x)在区间[1,2]上的最小值;
(2)若f(x)<g(x)在x∈(1,+∞)上恒成立,求实数a的取值范围.

分析 (1)先求出函数g(x)的导数,根据x的范围,确定导函数的符号,从而求出函数的单调区间;
(2)问题转化为1+2a<$\frac{{x}^{2}}{lnx}$在x∈(1,+∞)上恒成立,令h(x)=$\frac{{x}^{2}}{lnx}$(x>1),通过求导得到函数h(x)的最小值,进而求出a的范围.

解答 解:(1)当a=1时,g(x)=x2-2lnx,x∈[1,2],
∴g′(x)=2x-$\frac{2}{x}$=$\frac{{2x}^{2}-2}{x}$,
因为x∈[1,2],所以g′(x)≥0,
所以g(x)在区间[1,2]上单调递增,即x=1时,g(x)min=g(1)=1,
(2)要使得f(x)<g(x)在x∈(1,+∞)上恒成立,
即lnx<x2-2alnx在x∈(1,+∞)上恒成立,
亦即1+2a<$\frac{{x}^{2}}{lnx}$在x∈(1,+∞)上恒成立,
令h(x)=$\frac{{x}^{2}}{lnx}$(x>1),则h′(x)=$\frac{2x•lnx-x}{{(lnx)}^{2}}$,
当x∈(1,$\sqrt{e}$)时,2xlnx-x<0,h′(x)<0,
即h(x)在(1,$\sqrt{e}$)上为单调递减函数;
当x∈($\sqrt{e}$,+∞)时,2xlnx-x>0,h′(x)>0,
即h(x)在($\sqrt{e}$,+∞)上为单调递增函数,
因此h(x)min=h($\sqrt{e}$)=2e,
所以要使得 1+2a<$\frac{{x}^{2}}{lnx}$在x∈(1,+∞)上恒成立,
就有1+2a<h(x)min=2e,
∴a<e-$\frac{1}{2}$,
∴a<e-$\frac{1}{2}$时,f(x)<g(x)在x∈(1,+∞)上恒成立.

点评 不同考查了函数的单调性、最值问题,考查导数的应用,函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在锐角△ABC中,a、b、c是角A、B、C所对的边,且4sinB•sin2($\frac{π}{4}$+$\frac{B}{2}$)+cos2B=1+$\sqrt{3}$
(1)求角B的度数;
(2)若S是该三角形的面积,a=8,S=10$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y为正实数,若关于x,y的不等式$\frac{3x}{2x+y}$+$\frac{3y}{x+2y}$≤m2+m恒成立,则实数m的取值范围是(-∞,-2]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设△ABC的内角A、B、C所对的边分别为a、b、c,且acosC+$\frac{1}{2}$c=b,
(Ⅰ)求角A的大小;
(Ⅱ)当a=1时,求△ABC内切圆半径R的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出如下“三段论”推理:
因为整数是自然数,…大前提
而-5是整数,…小前提
所以-5是自然数.…结  论
则(  )
A.这个推理的形式错误B.这个推理的大前提错误
C.这个推理的小前提错误D.这个推理正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|0<x<3},B={x|-1<x<3},则A∪B=(  )
A.{x|-1<x<3}B.{x|0<x<3}C.{x|x>-1}D.{x|x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=[3x2+(2a-6)x+12-a]•ex有极大值和极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以(2,-1)为圆心且与直线3x-4y+5=0相交所得弦长为8的圆的标准方程为(  )
A.(x-2)2+(y+1)2=9B.(x+2)2+(y-1)2=9C.(x-2)2+(y+1)2=25D.(x+2)2+(y-1)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有两个不透明的箱子,每个箱子里都装有3个完全相同的小球,球上分别标有数字1,2,3.甲从其中一个箱子中随机摸出一个球,乙从另一个箱子中随机摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),则甲没有获胜的概率为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案