精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知函数 (R).
(1) 若,求函数的极值;
(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。
(1)  ;
(2)存在实数,当时,函数在区间上有两个零点。
本试题主要是考查了运用导数求解函数的极值以及函数的零点问题的运用
(1)先求解导数,运用导数的思想求解得到极值。
(2)假设存在实数a使得函数f=(x)在区间[0,2]上有两个零点,那么根据函数的单调性以及函数的极大值和极小值的符号,来得到参数a的范围。
解:(1)      ………………1分

 



1


-
0
+
0
-

递减
极小值
递增
极大值
递减
                              …………5分
(2)
,                      
① 当时,上为增函数,在上为减函数,,所以在区间上各有一个零点,即在上有两个零点;             ………………………7分
②       当时,上为增函数,在上为减函数,上为
增函数,,所以只在区间上有一个零点,故在上只有一个零点;                                      …………………………9分
③ 当时,上为增函数,在上为减函数,上为增函数,, 所以只在区间上有一个零点,故在上只有一个零点;                                           …………………………11分
故存在实数,当时,函数在区间上有两个零点。……………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数
(1)判断的单调性并证明;
(2)若满足,试确定的取值范围。
(3)若函数对任意时,恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且函数处都取得极值。
(1)求实数的值;
(2)求函数的极值;
(3)若对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分 )已知函数
(1)求函数的最大值;
(2)若,不等式恒成立,求实数的取值范围;
(3)若,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数
(1)曲线C: 经过点P(1,2),且曲线C在点P处的切线平行于直线,求的值。
(2)已知在区间(1,2)内存在两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知函数满足对于,均有成立.
(1)求函数的解析式;
(2)求函数的最小值;
(3)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分)
设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间上是减函数,则实数a的取值范围是        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)设函数内有极值。
(1)求实数的取值范围;
(2)若分别为的极大值和极小值,记,求S的取值范围。
(注:为自然对数的底数)

查看答案和解析>>

同步练习册答案