精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线经过点,其倾斜角为,在以原点为极点,轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线的极坐标方程为

(Ⅰ)若直线与曲线有公共点,求的取值范围;

(Ⅱ)设为曲线上任意一点,求的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】

试题分析:(Ⅰ)由直线l经过点P(﹣1,0),且倾斜角为α,可得直线l的参数方程,利用互化公式可得C的直角坐标方程.由直线l与曲线C有公共点,可得,解出即可得出的取值范围;

(Ⅱ)设M(x,y)为曲线C上任意一点,利用参数方程为(θ为参数),结合三角函数知识求的取值范围.

试题解析:

(Ⅰ)曲线的极坐标方程为

曲线的直角坐标方程为

直线经过点,其倾斜角为直线的参数方程为为参数),

,代入整理得

直线与曲线有公共点,

的取值范围是

(Ⅱ)曲线的直角坐标方程为可化为

其参数方程为为参数),

为曲线上任意一点,

,其中

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDA1B1C1D1为正方体,则下面结论正确的是(  )

A.A1BB1C

B.平面CB1D1⊥平面A1B1C1D1

C.平面CB1D1∥平面A1BD

D.异面直线ADCB1所成的角为30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,在平面直角坐标系xOy中,平行于x轴且过点A(32)的入射光线 l1

被直线ly=x反射.反射光线l2y轴于BC过点A且与l1, l2 都相切.

(1)l2所在直线的方程和圆C的方程;

(2)分别是直线l和圆C上的动点,求的最小值及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高三理科班共有名同学参加某次考试,从中随机挑出名同学,他们的数学成绩与物理成绩如下表:

数学成绩

物理成绩

1)数据表明之间有较强的线性关系,求关于的线性回归方程;

2)本次考试中,规定数学成绩达到分为优秀,物理成绩达到分为优秀.若该班数学优秀率与物理优秀率分别为,且除去抽走的名同学外,剩下的同学中数学优秀但物理不优秀的同学共有人,请写出列联表,判断能否在犯错误的概率不超过的前提下认为数学优秀与物理优秀有关?

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.

(Ⅰ)若,求曲线的方程;

(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐进线上;

(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为了净化广州水系,拟在小清河建一座平面图(如图所示)为矩形且面积为200 m2的三级污水处理池,由于地形限制,长、宽都不能超过16 m,如果池外壁建造单价为400元/m2,中间两条隔墙建造单价为248元/m2,池底建造单价为80元/m2(池壁厚度忽略不计,且池无盖).

(1)写出总造价y(元)与x的函数关系式,并指出定义域;

(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低,并求最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家举行大型的促销活动,经测算,当某产品促销费用为x(万元)时,销售量t(万件)满足(其中).现假定产量与销售量相等,已知生产该产品t万件还需投入成本万元(不含促销费用),产品的销售价格定为/件.

1)将该产品的利润y(万元)表示为促销费用x(万元)的函数;

2)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若处取得极值,求过点且与处的切线平行的直线方程;

(II)当函数有两个极值点,且时,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论

ACBD

ACD是等边三角形;

AB与平面BCD成60°的角;

AB与CD所成的角是60°.

其中正确结论的序号是________

查看答案和解析>>

同步练习册答案