【题目】执行如图的程序框图(N∈N*),那么输出的p是( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】下列判断错误的是( )
A.若随机变量 服从正态分布 ,则 ;
B.若 组数据 的散点都在 上,则相关系数 ;
C.若随机变量 服从二项分布: , 则 ;
D. 是 的充分不必要条件;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,该几何体是由一个直三棱柱 和一个正四棱锥 组合而成, , .
(Ⅰ)证明:平面 平面 ;
(Ⅱ)求正四棱锥 的高 ,使得二面角 的余弦值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】执行如图所示的程序框图,若输出的结果是8,则判断框内m的取值范围是( )
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x- 的定义域为(0,1](a为实数).
(1)当a=1时,求函数y=f(x)的值域;
(2)求函数y=f(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 的定义域为 ,如果 , ,使 ( 为常数)成立,则称函数 在 上的均值为 .给出下列四个函数:① ;② ;③ ;④ .则其中满足在其定义域上均值为2的函数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(I)若曲线 存在斜率为-1的切线,求实数a的取值范围;
(II)求 的单调区间;
(III)设函数 ,求证:当 时, 在 上存在极小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表:
爱好 | 不爱好 | 合计 | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合计 | 30 | 50 | 80 |
(1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为,求的分布列和期望值;
(2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com