(07年福建卷理)(本小题满分12分)如图,正三棱柱的所有棱长都为
,
为
中点.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面
的距离.
本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.
解析:解法一:(Ⅰ)取中点
,连结
.
为正三角形,
.
正三棱柱
中,平面
平面
,
平面
.
连结,在正方形
中,
分别为
的中点,
,
.
在正方形中,
,
平面
.
(Ⅱ)设与
交于点
,在平面
中,作
于
,连结
,由(Ⅰ)得
平面
.
,
为二面角
的平面角.
在中,由等面积法可求得
,
又,
.
所以二面角的大小为
.
(Ⅲ)中,
,
.
在正三棱柱中,到平面
的距离为
.
设点到平面
的距离为
.
由得
,
.
点
到平面
的距离为
.
解法二:(Ⅰ)取中点
,连结
.
为正三角形,
.
在正三棱柱
中,平面
平面
,
平面
.
取中点
,以
为原点,
,
,
的方向为
轴的正方向建立空间直角坐标系,则
,
,
,
,
,
,
,
.
,
,
,
.
平面
.
(Ⅱ)设平面的法向量为
.
,
.
,
,
令得
为平面
的一个法向量.
由(Ⅰ)知平面
,
为平面
的法向量.
,
.
二面角
的大小为
.
(Ⅲ)由(Ⅱ),为平面
法向量,
.
点
到平面
的距离
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com