精英家教网 > 高中数学 > 题目详情
设函数f(x)=1-|2x-3|.
(I)求不等式f(x)≥3x+l的解集;
(II)若不等式f(x)-mx≥0的解集非空,求m的取值范围.
分析:(I)不等式f(x)≥3x+l,即|2x-3|+3x≤0,分别求得
x≥
3
2
2x-3+3x≤0
  和
x <
3
2
3-2x+3x≤0
 的解集,取并集,即得所求.
(II)画出f(x)=1-|2x-3|和y=mx的图象,过原点的直线y=mx过点A时,m=
2
3
.当过原点的直线y=mx与AC平行时,m=2,由此求得不等式f(x)-mx≥0的解集非空时,m的取值范围.
解答:解:(I)不等式即|2x-3|+3x≤0,
x≥
3
2
2x-3+3x≤0
,或 
x <
3
2
3-2x+3x≤0

x≥
3
2
x≤
3
5
 或
x <
3
2
x≤ -3
,故不等式的解集为[x|x≤-3}.
(II)f(x)=1-|2x-3|=
4-2x , x≥
3
2
2x-2 , x<
3
2
.由单调性可得f(x)的最大值点为A(
3
2
,1),
过原点的直线y=mx过点A时,m=
2
3
.当过原点的直线y=mx与AC平行时,m=2,
故当
2
3
<m≤2时,f(x)的图象和直线y=mx无交点.
故当不等式f(x)-mx≥0的解集非空时,m的取值范围为(-∞,
2
3
]∪(2,+∞).
点评:本题主要考查绝对值不等式的解法,体现了分类讨论、数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|1-
1x
|(x>0),证明:当0<a<b,且f(a)=f(b)时,ab>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-
1-x
x
(x<0)
a+x2(x≥0)
,要使f(x)在(-∞,+∞)内连续,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1             (x≤
3
)
4-x2
(
3
<x<2)
0              (x≥2)
,则
2010
-1
f(x)dx的值为
π
3
+
2+
3
2
π
3
+
2+
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-|x-1|,x<2
1
2
f(x-2),x≥2
,则函数F(x)=xf(x)-1的零点的个数为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1),则函数g(x)的递减区间是(  )

查看答案和解析>>

同步练习册答案