精英家教网 > 高中数学 > 题目详情
15.讨论函数y=(ax-1)(x-2)(a∈R)的零点.

分析 分当a=0时,当a=$\frac{1}{2}$时,和当a≠0,且a≠$\frac{1}{2}$时,三种情况,结合函数零点的定义,可得答案.

解答 解:当a=0时,ax-1=0无解,函数y=(ax-1)(x-2)只有一个零点2;
当a=$\frac{1}{2}$时,解ax-1=0得:x=2,函数y=(ax-1)(x-2)只有一个零点2;
当a≠0,且a≠$\frac{1}{2}$时,解ax-1=0得:x=$\frac{1}{a}$,函数y=(ax-1)(x-2)只有两个零点2和$\frac{1}{a}$.

点评 本题考查的知识点是函数的零点,正确理解函数零点的定义,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知对数函数f(x)过点(2,4),则f($\root{4}{2}$)的值为(  )
A.-1B.$\frac{1}{2}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知方程x2+xlog26+log23=0的两根为α和β,求($\frac{1}{4}$)α+($\frac{1}{4}$)β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实系数三次函数f(x)=ax3+bx2-bx-a(a≠0).
(1)求证:x=1是函数f(x)的零点;
(2)当a与b满足什么关系时,函数f(x)还有其他零点?
(3)如果x0是函数f(x)的零点,求证:$\frac{1}{{x}_{0}}$也是函数f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,则称f(x)为k阶缩放函数.
(1)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=1+log${\;}_{\frac{1}{2}}$x,求f(2$\sqrt{2}$)的值;
(2)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=$\sqrt{2x-{x}^{2}}$,求证:函数y=f(x)-x在(1,+∞)上无零点;
(3)已知函数f(x)为k阶缩放函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.P点在则△ABC所在的平面外,O点是P点在平面ABC内的射影,PA、PB、PC两两垂直,则D点是则△ABC的垂心.(填外心,内心,垂心,重心)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.集合{3,x2-2x}中,x应满足的条件是x≠3且x≠-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题p:?x∈R,x2+ax+a2≥0;命题q:若一条直线不在平面内,则这条直线就与这个平面平行,则下列命题中为真命题的是(  )
A.p∨qB.p∧qC.(¬p)∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知P(-1,1),Q(2,2),若直线l:y=mx-1与射线PQ(P为端点)有交点,则实数m的取值范围是m≤-2或m>$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案