精英家教网 > 高中数学 > 题目详情
已知cos(α-β)=-
4
5
,cos(α+β)=
4
5
,α-β在第三象限,α+β在第四象限,求cos2α,cos2β.
考点:两角和与差的余弦函数,二倍角的余弦
专题:三角函数的求值
分析:根据题意,作如下变形:2α=(α-β)+(α+β),2β=(α+β)-(α-β)即可.
解答: 解:由已知,易得:sin(α-β)=-
3
5

sin(α+β)=-
3
5

所以cos2α=cos[(α-β)+(α+β)]
=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)
=-
4
5
×
4
5
-(-
3
5
)×(-
3
5
)

=-1,
cos2β=cos[(α+β)-(α-β)]
=cos(α-β)cos(α+β)+sin(α-β)sin(α+β)
=-
4
5
×
4
5
+(-
3
5
)×(-
3
5
)

=-
7
25

故cos2α=-1,cos2β=-
7
25
点评:本题考查三角函数的计算,利用已知条件,进行恰当的变形是解决本题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线x2=4y的准线l与y轴交于点P,若l绕点P以每秒
π
12
弧度的角速度按逆时针方向旋转t1秒后,恰好与抛物线第一次相交于一点,再旋转t2秒后,恰好与抛物线第二次相相交于一点,则t2的值为(  )
A、6B、4C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且
S1
S2
=
16
9
,则
υ1
υ2
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求f(x)=sin(2x-
π
6
)在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元“刘磊算了一下说:“你一定搞错了“李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,π]上随机取一个数x,则事件“sinx+cosx≥
6
2
”发生的概率为(  )
A、
1
4
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项公式an=10+lg2n.求证:数列{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=f(x)的图象沿着直线x+y=0的方向向右下方平移2
2
个单位,得到函数y=sin3x的图象,则y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=
|kA-kB|
|AB|
叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:
(1)函数y=x3-x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>
3

(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;
(4)设曲线y=ex上不同两点A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<1恒成立,则实数t的取值范围是(-∞,1);
以上正确命题的序号为
 
(写出所有正确的)

查看答案和解析>>

同步练习册答案