【题目】定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
【答案】D
【解析】解:∴定义在R上的函数f(x)的图象关于y轴对称, ∴函数f(x)为偶函数,
∵函数数f(x)在[0,+∞)上递减,
∴f(x)在(﹣∞,0)上单调递增,
若不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)对x∈[1,3]恒成立,
即f(2mx﹣lnx﹣3)≥f(3)对x∈[1,3]恒成立.
∴﹣3≤2mx﹣lnx﹣3≤3对x∈[1,3]恒成立,
即0≤2mx﹣lnx≤6对x∈[1,3]恒成立,
即2m≥ 且2m≤ 对x∈[1,3]恒成立.
令g(x)= ,则 g′(x)= ,在[1,e)上递增,(e,3]上递减,∴g(x)max= .
令h(x)= ,h′(x)= <0,在[1,3]上递减,∴h(x)min= .
综上所述,m∈[ , ].
故选D.
科目:高中数学 来源: 题型:
【题目】已知圆 : (其中 为圆心)上的每一点横坐标不变,纵坐标变为原来的一半,得到曲线 .
(1)求曲线 的方程;
(2)若点 为曲线 上一点,过点 作曲线 的切线交圆 于不同的两点 (其中 在 的右侧),已知点 .求四边形 面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从装有 2个红球和 2个白球的口袋中任取 2个球,则下列每对事件中,互斥事件的对数是( )对
(1)“至少有 1个白球”与“都是白球” (2)“至少有 1个白球”与“至少有 1个红球”
(3)“至少有 1个白球”与“恰有 2个白球” (4)“至少有 1个白球”与“都是红球”
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. ,y R,若x+y 0,则x 且y
B.a R,“ ”是“a>1”的必要不充分条件
C.命题“ x R,使得 ”的否定是“ R,都有 ”
D.“若 ,则a<b”的逆命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设公差大于0的等差数列{ }的前n项和为 .已知 ,且 , , 成等比数列.记数列 的前n项和为 .
(1)求 ;
(2)若对于任意的n ,k 恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱锥P﹣ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA= ,PB= ,则三棱锥P﹣ABC的外接球的表面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com