精英家教网 > 高中数学 > 题目详情

如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=数学公式在(0,2)内具有“Lg”性质,且中值ξ=数学公式,f′(ξ)=-数学公式
③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有数学公式[f(x1)+f(x2)]<f(数学公式)恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=数学公式
其中你认为正确的所有命题序号是 ________.

①②
分析:对每一个命题进行逐一判定是否满足函数f(x)在区间(a,b)内具有“Lg”性质,对于①根据导函数的几何意义进行判定,对于②,函数y在(0,2)上连续且可导,代值计算可得两端点连线的斜率存在x=时的导数值与之相等,对于③,举反例进行判定即可,对于④,只能保证f(x)是上凸函数,不能保证中值一定在中点处进行判定.
解答:对于①,根据导函数的几何意义立即可得正确;
对于②,函数y在(0,2)上连续且可导,代值计算可得两端点连线的斜率为-
又y'=,当x=时,y'=-,故②正确.
对于③,两端点连线斜率为3
而f'(x)=3x2,令3x2=3,x=±1,在(-1,2)内只有一个中值ξ=1,故③错误;
对于④,[f(x1)+f(x2)]<f()只能保证f(x)是上凸函数,不能保证中值一定在中点处.④错误
故答案为:①②
点评:本题题意比较新颖,主要考查了导数的几何意义,以及函数恒成立问题和直线的斜率,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=
2-
x2
2
在(0,2)内具有“Lg”性质,且中值ξ=
2
,f′(ξ)=-
2
2

③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=
x1+x2
2

其中你认为正确的所有命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)设函数f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函数f(x)的一个极值点,求实数a的值及f(x)的最大值;
(Ⅱ)求实数a的值,使得函数f(x)同时具备如下的两个性质:
①对于任意实数x1,x2∈(0,1)且x1≠x2
f(x1)+f(x2)
2
<f(
x1+x2
2
)
恒成立;
②对于任意实数x1,x2∈(1,+∞)且x1≠x2
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函数f(x)的一个极值点,求实数a的值及f(x)的最大值;
(Ⅱ)求实数a的值,使得函数f(x)同时具备如下的两个性质:
①对于任意实数x1,x2∈(0,1)且x1≠x2数学公式恒成立;
②对于任意实数x1,x2∈(1,+∞)且x1≠x2数学公式恒成立.

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市高考数学三模试卷(理科)(解析版) 题型:解答题

如果函数f(x)同时满足下列条件:①在闭区间[a,b]内连续,②在开区间(a,b)内可导且其导函数为f′(x),那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我们把这一规律称为函数f(x)在区间(a,b)内具有“Lg”性质,并把其中的ξ称为中值.有下列命题:
①若函数f(x)在(a,b)具有“Lg”性质,ξ为中值,点A(a,f(a)),B(b,f(b)),则直线AB的斜率为f′(ξ);
②函数y=在(0,2)内具有“Lg”性质,且中值ξ=,f′(ξ)=-
③函数f(x)=x3在(-1,2)内具有“Lg”性质,但中值ξ不唯一;
④若定义在[a,b]内的连续函数f(x)对任意的x1、x2∈[a,b],x1<x2,有[f(x1)+f(x2)]<f()恒成立,则函数f(x)在(a,b)内具有“Lg”性质,且必有中值ξ=
其中你认为正确的所有命题序号是    

查看答案和解析>>

同步练习册答案