精英家教网 > 高中数学 > 题目详情

【题目】如图1,在等腰直角三角形中,分别是上的点,的中点,将沿折起,得到如图2所示的四棱锥,其中.

(1)证明:平面

(2)求二面角的平面角的余弦值;

(3)求直线与平面所成角的正弦值.

【答案】(1)见解析;(2);(3).

【解析】试题分析:(1)在图1、2中,连接,易得,利用勾股定理得

,利用线面垂直的判定定理,即可证得平面.

(2)在图2中,得到就是二面角的平面角,在中,即可求解二面角的大小;

(3)取中点,连接,得到就是直线与平面所成的角,即可求解线面角的大小.

试题解析:

(1)在图1、2中,连接,易得

因为,所以

,

所以平面.

(2)在图2中设交于点,取中点,连接,则

就是二面角的平面角,

其中

.

(3)取中点,连接,作,则平面

所以就是直线与平面所成的角,

易得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公园内有一块以为圆心半径为米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点分别在圆周上;观众席为梯形内切在圆外的区域,其中,且在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过米.设.问:对于任意,上述设计方案是否均能符合要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为

1)求过点且与圆相切的直线的方程;

2)直线过点,且与圆交于两点,若,求直线的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男生人数多于女生人数;②女生人数多于教师人数;③教师人数的两倍多于男生人数.问:

1)若教师人数为4,则女生人数的最大值为多少?

2)该小组人数的最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:坐标系与参数方程选讲.

在平面直角坐标系中,曲线为参数,实数),曲线

为参数,实数). 在以为极点, 轴的正半轴为极轴的极坐标系中,射线交于两点,与交于两点. 当时, ;当时, .

(1)求的值; (2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,且,平面平面.

(1)求证:

(2)若底面是边长为2的菱形,四棱锥的体积为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆.

1)若直线过点且到圆心的距离为,求直线的方程;

2)设过点的直线与圆交于两点(的斜率为负),当时,求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设点为椭圆的右焦点,圆且斜率为的直线交圆两点,交椭圆于点两点,已知当时,

(1)求椭圆的方程.

(2)当时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当 时,讨论 的极值情况;

(2)若 ,求 的值.

查看答案和解析>>

同步练习册答案