精英家教网 > 高中数学 > 题目详情
(本小题满分12分)一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片。
(1)从盒中依次抽取两次卡片,每次抽取一张,取出的卡片不放回,求两次取到的卡片的数字既不全是奇数,也不全是偶数的概率;
(2)若从盒子中有放回的抽取3次卡片,每次抽取一张,求恰有两次取到卡片的数字为偶数的概率;
(3)从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当放回记有奇数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望。
解:(Ⅰ)因为1,3,5是奇数,2、4是偶数,
设事件A为“两次取到的卡片的数字既不全是奇数,也不全是偶数” ……2分
   或             4分
(Ⅱ)设表示事件“有放回地抽取3次卡片,每次抽取一张,恰有两次取到的卡片上数字为偶数”,
由已知,每次取到的卡片上数字为偶数的概率为,            ……6分
.                        ……8分
(Ⅲ)依题意,的可能取值为


,                          …………………11分
所以的分布列为

.  …………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为(),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
ξ
0
1
2
3



b

(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望ξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

符合下列三个条件之一,某名牌大学就可录取:
①获国家高中数学联赛一等奖(保送录取,联赛一等奖从省高中数学竞赛优胜者中考试选拔);
②自主招生考试通过并且高考分数达到一本分数线(只有省高中数学竞赛优胜者才具备自主招生考试资格);
③高考分数达到该大学录取分数线(该大学录取分数线高于一本分数线).
某高中一名高二数学尖子生准备报考该大学,他计划:若获国家高中数学联赛一等奖,则保送录取;若未被保送录取,则再按条件②、条件③的顺序依次参加考试.
已知这名同学获省高中数学竞赛优胜奖的概率是0.9,通过联赛一等奖选拔考试的概率是0.5,通过自主招生考试的概率是0.8,高考分数达到一本分数线的概率是0.6,高考分数达到该大学录取分数线的概率是0.3.
(I)求这名同学参加考试次数的分布列及数学期望;
(II)求这名同学被该大学录取的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两名同学在5次英语口语测试中的成绩统计如下面的茎叶图所示.
(1)现要从中选派一人参加英语口语竞赛,从统计学角度,你认为派哪位学生参加更合适,请说明理由;
(2)若将频率视为概率,对学生甲在今后的三次英语口语竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( 12分)
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.求:
(1)至少有1人面试合格的概率;
(2)签约人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)电视台举办猜奖活动,参与者需先后回答两道选择题:问题A有四个选项,问题B有六个选项,但都只有一个选项是正确的。问题A回答正确可得奖金m元,问题B回答正确可得奖金n元。                           
活动规定:①参与者可任意选择答题顺序;②如果第一个问题回答错误则该参与者猜奖活动中止。
一个参与者在回答问题前,对这两个问题都很陌生,因而准备靠随机猜测回答问题,试确定回答问题的顺序,使获奖金额的期望值较大。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个袋中装有10个红球,20个白球,这些球除颜色外完全相同,一次从中摸出5个球,随机变量表示取到的红球数,服从超几何分布,则=
            (用组合数作答)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某高等学校自愿献血的50位学生的血型分布的情况如下表: 
血型
A
B
AB
O
人数
20
10
5
15
(1) 从这50位学生中随机选出2人,求这2人血型都为A型的概率;
(2)现有一位血型为A型的病人需要输血,要从血型为A,O的学生中随机选出2人准备献血,记选出A型血的人数为求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分12分)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。
(Ⅰ)求该地1为车主至少购买甲、乙两种保险中的1种的概率;
Ⅱ)X表示该地的100为车主中,甲、乙两种保险都不购买的车主数,求X的期望。

查看答案和解析>>

同步练习册答案