精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为ρcosθ-ρsinθ-4=0.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,求点P到曲线C2的距离|PQ|的最大值.

分析 (1)消去参数,将C1的参数方程化为普通方程,利用极坐标方程与直角坐标方程的互化方法得到曲线C2的直角坐标方程;
(2)设P($\sqrt{3}$cosθ,sinθ),利用点到直线的距离公式,即可求点P到曲线C2的距离|PQ|的最大值.

解答 解:(1)由$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),消去参数θ得,曲线C1的普通方程得$\frac{{x}^{2}}{3}+{y}^{2}$=1.…(3分)
由ρcosθ-ρsinθ-4=0得,曲线C2的直角坐标方程为x-y-4=0.     …(5分)
(2)设P($\sqrt{3}$cosθ,sinθ),则点P到曲线C2的距离为d=$\frac{|\sqrt{3}cosθ-sinθ-4|}{\sqrt{2}}$=$\frac{4-2cos(θ+\frac{π}{6})}{\sqrt{2}}$ …(8分)
当cos(θ+$\frac{π}{6}$)=-1时,d有最大值3$\sqrt{2}$,所以|PQ|的最大值为3$\sqrt{2}$.      …(10分)

点评 本题考查参数方程、普通方程、极坐标方程的转化,考查点到直线的距离公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(b>a>0)$的左焦点F1(-c,0)(c>0)作圆x2+y2=$\frac{{a}^{2}}{4}$的切线,切点为E,延长F1E交双曲线右支于点P.若E是F1P中点,则双曲线的离心率为(  )
A.$\frac{5}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若双曲线$\frac{x^2}{m^2}-{y^2}=1(m>0)$的一条渐近线方程为$x+\sqrt{3}y=0$,则m=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.惠城某影院共有100个座位,票价不分等次.根据该影院的经营经验,当每张标价不超过10元时,票可全部售出;当每张票价高于10元时,每提高1元,将有3张票不能售出.为了获得更好的收益,需给影院定一个合适的票价,符合的基本条件是:
①为方便找零和算帐,票价定为1元的整数倍;
②影院放映一场电影的成本费用支出为575元,票房收入必须高于成本支出.
用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入).
(Ⅰ)把y表示成x的函数,并求其定义域;
(Ⅱ)试问在符合基本条件的前提下,每张票价定为多少元时,放映一场的净收入最多?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足$\left\{\begin{array}{l}{y≤x-1}\\{x≤3}\\{x+5y≥4}\end{array}\right.$,则$\frac{y}{x}$的最大值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图是甲、乙两位同学高二上学期历史成绩的茎叶图,有一个数字被污损,用a(3≤a≤8且a∈N)表示.
(1)若乙同学算出自己历史平均成绩是92分,求a的值及乙同学历史成绩的方差;
(2)求甲同学历史平均成绩不低于乙同学历史平均成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算sin(-960°)的值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3-$\frac{1}{2}$x2-2x+c
(1)求函数f(x)的单调区间;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x2+2ax-3在[2,3]上单调,则实数a取值范围是a≤-3,或a≥-2.

查看答案和解析>>

同步练习册答案