精英家教网 > 高中数学 > 题目详情
5.设x,y∈R,则x2+y2<2是|x|+|y|≤$\sqrt{2}$的既不充分也不必要条件.

分析 画出图象,结合充分必要条件的定义判断即可.

解答 解:如图示:

命题“x2+y2<2”对应的图象为半径为$\sqrt{2}$的圆的内部,
命题“|x|+|y|≤$\sqrt{2}$”对应的图象为正方形及其内部,
则命题“x2+y2<2”是命题“|x|+|y|<$\sqrt{2}$”的既不充分也不必要条件,
故答案为:既不充分也不必要条件.

点评 本题考查了数形结合思想,考查充分必要条件,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设a、b、c是空间三条直线,下面给出四个命题:
①若a⊥b,b⊥c,则a∥c;
②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;
③若a和b相交,b和c相交,则a和c也相交;
④若a和b共面,b和c共面,则a和c也共面.
其中真命题的个数是(  )
A.4B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.对于不等式x+(a+1)$\sqrt{x}$+a<0分别求满足下列条件的实数a的取值范围:
(1)不等式的解集是[0,3);
(2)不等式在[0,3)上有解;
(3)不等式在[0,3)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A={x|x具有性质p},B={x|x具有性质q},c={x|x具有性质r},集台A,B,C之间的关系如图所示:(注:每-个集合均是一个圆及其内部)
(1)p是q的什么条件?
(2)q是r的什么条件?
(3)r是p的什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合U={x|-3≤x≤3},集合M={x|1<x<2},则CUM={x|-3≤x≤1或2≤x≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各组函数相等的是(  )
A.f(x)=x-2,g(x)=$\frac{{x}^{2}-4}{x+2}$B.f(x)=$\frac{|x|}{x}$,g(x)=1(x≠0)
C.f(x)=x2-2x-1,g(t)=t2-2t-1D.f(x)=$\frac{1}{2}$,g(x)=$\frac{(x-1)^{0}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在矩形ABCD,AB=2,AD=1,边DC上(包含点D、C)的动点P与CB延长线上(包含点B)的动点Q满足|$\overline{DP}$|=|$\overline{BQ}$|,则向量$\overline{PA}$与向量$\overline{PQ}$的数量积$\overline{PA}$•$\overline{PQ}$的最小值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=C${\;}_{20}^{10-x}$,g(x)=P${\;}_{20}^{x}$,集合A={x||x|≤10,x∈Z},B={x|1≤x<20.x∈N*}
(1)若f(x)的定义域为A,判断f(x)的奇偶性
(2)解方程f(6-x)=f(2x-15)
(3)若g(x)的定义域为B,求证:g(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax-$\frac{a}{x}$-2lnx(a>0),g(x)=$\frac{2a}{x}$
(1)求f(x)的单调区间;
(2)若对区间[1,e]上任意x1和x2总有f(x1)<g(x2),求实数a取值范围.

查看答案和解析>>

同步练习册答案