精英家教网 > 高中数学 > 题目详情
设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1,F2为焦点,离心率为
1
2
的椭圆C2与抛物线C1的一个交点为P.
(1)若椭圆的长半轴长为2,求抛物线方程;
(2)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,如果|A1A2|等于△PF1F2的周长,求l的斜率;
(3)是否存在实数m,使得△PF1F2的边长是连续的自然数?若存在,求出m的值,若不存在,说明理由.
(1)∵椭圆C2的离心率为
1
2
,长半轴长为2,∴
3

∵物线C1:y2=4mx(m>0)的焦点为椭圆右焦点,∴
p
2
=1,∴抛物线方程y2=4x
(2)由(1)可知,椭圆方程为
x2
4
+
y2
3
=1
,所以△PF1F2的周长为2a+2c=6.
①当直线l斜率存在时,设直线方程为y=k(x-1),代入y2=4x,得k2x2-(2k2+4)x+k2=0,
∴x1+x2=2+
4
k2
,x1x2=1,
∴|A1A2|=
1+k2
|x1-x2|
=
4
k4
+
8
k2
-5=0,解得,k=±
2

②当直线l斜率不存在时,A1点坐标为(1,
3
2
)A2(1,-
3
2
),∴|A1A2|=2
3
≠6,不成立.
综上,直线l的斜率为±
2

(3)由题意可知,椭圆中c=m.椭圆C2离心率为
1
2
,∴a=2c.
∴椭圆方程为
x2
4m2
+
y2
3m2
=1
由,
x2
4m2
+
y2
3m2
=1
y2=4mx
得P点横坐标为
2
3
m
,在椭圆中,|PF1|+|PF2|=2a=4m,
|F1F2|=2m,∴|PF2|,|F1F2|,|PF1|成等差数列,
假设存在实数m,使得△PF1F2的边长是连续的自然数,则PF2|=|F1F2|-1=2m-1,又因为P在抛物线上,
∴|F1F2|=
2
3
m
+m,∴m=3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆E的中心在原点O,焦点在x轴上,离心率e=
2
3
,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:
CA
BC
(λ≥2).
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线L:
x
4
+
y
3
=1与椭圆E:
x2
16
+
y2
9
=1相交于A,B两点,该椭圆上存在点P,使得△PAB的面积等于3,则这样的点P共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=x+m与曲线y=
1-2x2
有两个交点,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过(2,0)点且倾斜角为60°的直线与椭圆
x2
5
+
y2
3
=1
相交于A,B两点,则AB中点的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在同一坐标系中,方程
x2
a2
+
y2
b2
=1
与bx2=-ay(a>b>0)表示的曲线大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线y=kx-1与双曲线x2-y2=4没有公共点,则实数k的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,以
3
2
为离心率的椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A和B,点P是椭圆位于x轴上方的一点,且△PAB的面积最大值为2.
(Ⅰ)求椭圆方程;
(Ⅱ)设点Q是椭圆位于x轴下方的一点,直线AP、BQ的斜率分别为k1,k2,若k1=7k2,设△BPQ与△APQ的面积分别为S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的焦点在x轴上,O为坐标原点,F是一个焦点,A是一个顶点.若椭圆的长轴长是6,且cos∠OFA=
2
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)求点R(0,1)与椭圆C上的点N之间的最大距离;
(Ⅲ)设Q是椭圆C上的一点,过Q的直线l交x轴于点P(-3,0),交y轴于点M.若
MQ
=2
QP
,求直线l的斜率.

查看答案和解析>>

同步练习册答案