精英家教网 > 高中数学 > 题目详情
14.已知$\overrightarrow a$与$\overrightarrow b$的夹角为1200,且|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3.
(1)求$\overrightarrow a$•$\overrightarrow b$和|3$\overrightarrow a$+2$\overrightarrow b}$|;
(2)当x为何值时,x$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow a$+3$\overrightarrow b$垂直?
(3)求$\overrightarrow a$与3$\overrightarrow a+2\overrightarrow b$的夹角.

分析 (1)根据向量数量积的定义和应用即可求$\overrightarrow a$•$\overrightarrow b$和|3$\overrightarrow a$+2$\overrightarrow b}$|;
(2)根据向量垂直转化为(x$\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+3$\overrightarrow b$)=0,解方程即可.
(3)根据向量数量积的应用即可求$\overrightarrow a$与3$\overrightarrow a+2\overrightarrow b$的夹角.

解答 解:(1)∵$\overrightarrow a$与$\overrightarrow b$的夹角为1200,且|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3.
∴$\overrightarrow a•\overrightarrow b=|\overrightarrow a|•|\overrightarrow b|•cos{120°}=2×3×(-\frac{1}{2})=-3$,
∵$|3\overrightarrow a+2\overrightarrow b{|^2}=9|\overrightarrow a{|^2}+4|\overrightarrow b{|^2}+12\overrightarrow a•\overrightarrow b=36$,
∴$|3\overrightarrow a+2\overrightarrow b|=6$.
(2)若x$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow a$+3$\overrightarrow b$垂直,
则$(x\overrightarrow a-\overrightarrow b)•(\overrightarrow a+3\overrightarrow b)=4x-27+(3x-1)•(-3)=-24-5x=0$,
∴$x=-\frac{24}{5}$.
(3)设$\overrightarrow a$与3$\overrightarrow a+2\overrightarrow b$的夹角为θ,则$\overrightarrow a$•(3$\overrightarrow a+2\overrightarrow b$)=3${\overrightarrow a}$2+2$\overrightarrow a$•${\overrightarrow b}$=12-6=6,
则$cosθ=\frac{\overrightarrow a•(3\overrightarrow a+2\overrightarrow b)}{{|\overrightarrow{a|}•|3\overrightarrow a+2\overrightarrow b|}}=\frac{12-6}{2×6}=\frac{1}{2}$,
∴$\overrightarrow a$与3$\overrightarrow a+2\overrightarrow b$的夹角θ=60°.

点评 本题主要考查向量数量积的定义以及应用,根据相应的公式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.过⊙O外一点P作⊙O的两条割线PAB,PMN,其中PMN过圆心O,过P作再作⊙O的切线PT,切点为T.已知PM=MO=ON=1.
(Ⅰ)求切线PT的长;
(Ⅱ)求$\frac{AM•BM}{AN•BN}$时值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{{x}^{2}-2x+1}$+|x+a|.
(1)当a=2时,求f(x)的最小值;
(2)当x∈[$\frac{2}{3}$,1]时,f(x)≤x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果函数f(x)=$\frac{1}{1+{e}^{x}}$+a是奇函数,则实数a=(  )
A.1B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从气球A上测得正前方的河流的两岸B,C的俯角分别为α,β,如果这时气球的高是100米,则河流的宽度BC为(  )
A.$\frac{100(tanβ-tanα)}{tanαtanβ}$B.$\frac{100tanαtanβ}{tanα-tanβ}$
C.$\frac{100(tanα+tanβ)}{tanαtanβ}$D.$\frac{100tanαtanβ}{tanα+tanβ}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如表:
时间周一周二周三周四周五
车流量x(万辆)100102108114116
浓度y(微克)7880848890
根据上表数据,用最小二乘法求出y与x的线性回归方程是(  )
参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b•$\overline{x}$;参考数据:$\overline{x}$=108,$\overline{y}$=84.
A.$\hat y$=0.62x+7.24B.$\hat y$=0.72x+6.24C.$\hat y$=0.71x+6.14D.$\hat y$=0.62x+6.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(3,x),$\overrightarrow{b}$=(-2,2)
(1)若向量$\overrightarrow{a}$⊥$\overrightarrow{b}$,求实数x的值;
(2)若向量$\overrightarrow{b}$-$\overrightarrow{a}$与3$\overrightarrow{a}$+2$\overrightarrow{b}$共线,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x0∈R,使sinx0=$\frac{{\sqrt{5}}}{2}$;命题q:?x∈(0,+∞),x>sinx,则下列判断正确的是(  )
A.p为真B.¬q为假C.p∧q为真D.p∨q为假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=-x4+ax3+$\frac{1}{2}$bx2的单调递减区间为(0,$\frac{1}{2}$),(1,+∞).
(1)求实数a,b的值;
(2)试求当x∈[0,2]时,函数f(x)的最大值.

查看答案和解析>>

同步练习册答案