精英家教网 > 高中数学 > 题目详情
已知数列A:a1,a2,…,an(n≥3),令TA={x|x=ai+aj.1≤i<j≤n},car(TA)表示集合TA中元索的个数.
①若A:2,4,8,16,则card(TA)=
6
6

②若ai+1-ai=c(c为非零常数.1≤i≤n-1),则card(TA)=
2n-3
2n-3
分析:对于①若A={2,4,8,16},直接计算出TA={6,10,18,12,20,24},即可得出答案;
②若ai+1-ai=c( 1≤i≤n-1,c为非零常数),说明数列a1,a2,…,an,构成等差数列,利用特殊化思想,取特殊的等差数列进行计算,结合类比推理可得card(TA)=2n-3.
解答:解:①若A={2,4,8,16},
则TA={6,10,18,12,20,24},
∴card(TA)=6;
②若ai+1-ai=c( 1≤i≤n-1,c为非零常数),说明数列a1,a2,…,an,构成等差数列,
取特殊的等差数列进行计算,
取A={1,2,3,…,n},则TA={3,4,5,…,2n-1},
由于(2n-1)-3+1=2n-3,
∴TA中共2n-3个元素,
利用类比推理可得
若ai+1-ai=c( 1≤i≤n-1,c为非零常数),则card(TA)=2n-3.
故答案为:6;2n-3.
点评:本题考查集合与元素的位置关系和数列的综合应用,综合性较强,解题时注意特殊化思想和转化思想的运用,解题时要认真审题,仔细解答,避免错误,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项、现给出以下四个命题:①数列0,1,3具有性质P;②数列0,2,4,6具有性质P;③若数列A具有性质P,则a1=0;④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2,其中真命题有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知数列A:a1,a2,…,an(0≤a1<a2<…an,n≥3)具有性质P;对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项,现给出以下四个命题:
①数列0,2,4,6具有性质P;
②若数列A具有性质P,则a1=0;
③若数列A具有性质P且a1≠0an-an-k=ak(k=1,2,…,(n-1);
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a3=a1+a2
其中真命题有(  )

查看答案和解析>>

科目:高中数学 来源:2013年四川省成都市新津中学高考数学一模试卷2(理科)(解析版) 题型:填空题

已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有   

查看答案和解析>>

科目:高中数学 来源:2010年高考数学专项复习:创新题(3)(解析版) 题型:解答题

已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有   

查看答案和解析>>

同步练习册答案