精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2,x∈[-2,2]和函数g(x)=ax-1,x∈[-2,2],若对?x1∈[-2,2],总存在x0∈[-2,2],使f(x1)=g(x0)成立,则实数a的取值范围是
a≥2.5或a≤-2.5
a≥2.5或a≤-2.5
分析:根据对于任意x1∈[-2,2],总存在x0∈[-2,2],使得g(x0)=f(x1)成立,得到函数f(x)在[-2,2],上值域是g(x)在[-2,2]上值域的子集,然后利用求函数值域的方法求函数f(x)、g(x)在[-2,2],上值域,并列出不等式,解此不等式组即可求得实数a的取值范围即可.
解答:解:①若a=0,g(x)=-1,对于任意 x1∈[-2,2],f(x1)∈[0,4],不存在x0∈[-2,2],使g(x0)=f(x1
②当a>0时,g(x)=ax-1在[-2,2]是增函数,g(x)∈[-2a-1,2a-1]
任给 x1∈[-2,2],f(x1)∈[0,4]
若存在x0∈[-2,2],使得g(x0)=f(x1)成立
[0,4]⊆[-2a-1,2a-1]∴
-2a-1≤0
2a-1≥4
,∴a≥
5
2

③a<0,g(x)=ax-1在[-2,2]是减函数,g(x)∈[2a-1,-2a-1]
2a-1≤0
-2a-1≥4
,∴a≤-
5
2

综上,实数a的取值范围是a≥2.5或a≤-2.5.
故答案为:a≥2.5或a≤-2.5
点评:本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案