精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= x3﹣ax2﹣4在(3,+∞)上是增函数,则实数a的取值范围为

【答案】(﹣∞, ]
【解析】解:∵f(x)= x3﹣ax2﹣4在(3,+∞)上是增函数,
∴f′(x)≥0恒成立,
即f′(x)=x2﹣2ax≥0在(3,+∞)上恒成立,
即x﹣2a≥0在(3,+∞)上恒成立,
即a≤ 在(3,+∞)上恒成立,
∵x>3,∴
则a≤
所以答案是:(﹣∞, ]
【考点精析】认真审题,首先需要了解函数单调性的性质(函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集),还要掌握利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于在区间上有意义的函数,满足对任意的,有恒成立,厄称上是“友好”的,否则就称上是“不友好”的,现有函数.

(1)若函数在区间)上是“友好”的,求实数的取值范围;

(2)若关于的方程的解集中有且只有一个元素,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 (m>1)与双曲线 (n>0)有公共焦点F1 , F2 . P是两曲线的交点,则 =(
A.4
B.2
C.1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义域为R的偶函数. 当x≥0时,f(x)= ,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】班上有四位同学申请A,B,C三所大学的自主招生,若每位同学只能申请其中一所大学,且申请其中任何一所大学是等可能的.
(1)求恰有2人申请A大学或B大学的概率;
(2)求申请C大学的人数X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y= 是否符合公司要求的奖励函数模型,并说明原因;
(2)若该公司采用模型函数y= 作为奖励函数模型,试确定最小的正整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,3cosα), =(1,4tanα), ,且 =5.
(1)求| + |;
(2)设向量 的夹角为β,求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若f(x)在上为增函数,求m的取值范围;

(2)若f(x)的值域为R,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在其定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)记两个极值点分别为 ),求证: .

查看答案和解析>>

同步练习册答案