精英家教网 > 高中数学 > 题目详情
11.设$f(x)=\left\{\begin{array}{l}x+1,(x>0)\\ 1-x,(x=0)\\-1,(x<0)\end{array}\right.$,则f[f(0)]=(  )
A.1B.0C.2D.-1

分析 利用分段函数的性质,先求出f(0),再求出f[f(0)].

解答 解:∵$f(x)=\left\{\begin{array}{l}x+1,(x>0)\\ 1-x,(x=0)\\-1,(x<0)\end{array}\right.$,
∴f(0)=1-0=1,
f[f(0)]=f(1)=1+1=2.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=loga(x2-3x+2),g(x)=log2(2x2-5x+2)(a>0,且a≠1),若f(x)>g(x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要使$\frac{1}{2}$sinθ+$\frac{\sqrt{3}}{2}$cosθ=$\frac{m-6}{2-m}$有意义,则实数m的取值范围是(  )
A.(4,+∞)B.[4,+∞)C.[8,+∞)D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1),若直线y=kx与函数y=f(x)的图象恰有11个不同的公共点,则实数k的取值范围为($2\sqrt{6}-4$,$4\sqrt{3}-6$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a=(x,y)$,若实数x,y满足$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$,则$|{\overrightarrow a}|$的最大值是(  )
A.$\sqrt{73}$B.$\frac{{5\sqrt{2}}}{2}$C.$\sqrt{43}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.使奇函数$f(x)=\sqrt{3}sin(2x+θ)+cos(2x+θ)$在$[0,\frac{π}{4}]$上为增函数的θ值为(  )
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]
(1)当a=1时,求函数f(x)的值域;
(2)若f(x)≤-alnx+4恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数$f(x)=ax-\frac{b}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-4=0.
(Ⅰ) 求f(x)的解析式;
(Ⅱ) 证明:曲线f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l:3x-y-6=0与圆C:x2+y2-2x-4y=0.求:
(1)截得的弦AB的长;
(2)△AOB面积(O为坐标原点).

查看答案和解析>>

同步练习册答案