精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线的参数方程为为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点

1)求曲线的直角坐标方程;

2)若点AB为曲线上的两个点且,求的值.

【答案】1.(2

【解析】

1)先求解a,b,消去参数,即得曲线的直角坐标方程;再求解,利用极坐标和直角坐标的互化公式,即得曲线的直角坐标方程;

2)由于,可设,代入曲线直角坐标方程,可得的关系,转化,可得解.

1)将及对应的参数,代入

,即

所以曲线的方程为为参数,

所以曲线的直角坐标方程为

设圆的半径为R,由题意,圆的极坐标方程为

(或),

将点代入,得,即

所以曲线的极坐标方程为

所以曲线的直角坐标方程为

2)由于,故可设

代入曲线直角坐标方程,

可得

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,直线交椭圆两点,椭圆的右顶点为,且满足.

(1)求椭圆的方程;

(2)若直线与椭圆交于不同两点,且定点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数.

1)求函数的零点个数;

2)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征()和严重急性呼吸综合征()等较严重疾病.而今年出现在湖北武汉的新型冠状病毒()是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.

某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n)份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验n.

方式二:混合检验,将其中k)份血液样本分别取样混合在一起检验.

若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p.现取其中k)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求p关于k的函数关系式

2)若p与干扰素计量相关,其中)是不同的正实数,

满足)都有成立.

i)求证:数列等比数列;

ii)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱中,平面,点分别在线段上,且是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abc,cosB

(Ⅰ)若c=2a,求的值

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)若,求函数的极值;

(Ⅱ)设.上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,都垂直于平面,且.

1)证明:平面

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面是梯形.BCADABBCCD1AD2

(Ⅰ)证明;ACBP

(Ⅱ)求直线AD与平面APC所成角的正弦值.

查看答案和解析>>

同步练习册答案