·ÖÎö£º£¨1£©ÓÉÌâÒ⣬ÍÖÔ²CµÄ½¹µãΪ£¨-1£¬0£©£¬£¨1£¬0£©£¬ÇÒ¹ýµã£¨1£¬
£©£¬ÓÉÍÖÔ²µÄ¶¨Ò壬¿ÉµÃaµÄÖµ£¬´Ó¶ø¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¼ÙÉèÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²¾¹ýxÖáÉϵĶ¨µã£¬ÓÉ£¨1£©ÖªF£¨1£¬0£©£¬·ÖÀàÌÖÂÛ£º¢Ùµ±PQ¡ÍxÖáʱ£¬ÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-4£©
2+y
2=9£¬¿ÉµÃÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²¾¹ýxÖáÉϵĶ¨µã£¨1£¬0£©£¬£¨7£¬0£©£»¢Úµ±Ö±ÏßPQÓëxÖá²»´¹Ö±Ê±£¬¿ÉµÃÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-4£©
2+£¨y-
£©
2=
()2£¬ÑéÖ¤£¨1£¬0£©£¬£¨7£¬0£©ÔÚÔ²ÉÏ£»
£¨3£©ÓÉ£¨2£©Öª£¬ÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²¾¹ýxÖáÉϵĶ¨µã£¨1£¬0£©£¬£¨7£¬0£©£¬¹Ê¿ÉµÃÏ߶ÎMNΪֱ¾¶µÄÔ²µÄ°ë¾¶µÄ×îСֵ£¬´Ó¶ø¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬ÍÖÔ²CµÄ½¹µãΪ£¨-1£¬0£©£¬£¨1£¬0£©£¬ÇÒ¹ýµã£¨1£¬
£©£¬
ÓÉÍÖÔ²µÄ¶¨Ò壬¿ÉµÃ2a=4£¬¡àa=2
¡àb
2=a
2-1=3
¡àÍÖÔ²CµÄ·½³ÌΪ
+=1£»
£¨2£©¼ÙÉèÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²¾¹ýxÖáÉϵĶ¨µã£¬ÓÉ£¨1£©ÖªF£¨1£¬0£©
¢Ùµ±PQ¡ÍxÖáʱ£¬P£¬QµÄºá×ø±ê¾ùΪ1£¬½«x=1´úÈëÍÖÔ²·½³Ì¿ÉµÃy=¡À
²»·ÁÁîP£¨1£¬
£©£¬Q£¨1£¬-
£©
ÓÉA£¬P£¬MÈýµã¹²Ïߣ¬µÃ
=£¬¡àm=3
ͬÀí¿ÉµÃn=-3
¡àÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-4£©
2+y
2=9
Áîy=0£¬¿ÉµÃx=1»òx=7
¡àÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²¾¹ýxÖáÉϵĶ¨µã£¨1£¬0£©£¬£¨7£¬0£©£»
¢Úµ±Ö±ÏßPQÓëxÖá²»´¹Ö±Ê±£¬¡ßA£¨-2£¬0£©£¬M£¨4£¬m£©£¬¡à
kAM==¡àÖ±ÏßAMµÄ·½³ÌΪy=
(x+2)´úÈëÍÖÔ²·½³Ì£¬ÕûÀí¿ÉµÃ£¨27+m
2£©x
2+4m
2x+4m
2-108=0
ÉèP£¨x
1£¬y
1£©£¬Q£¨x
2£¬y
2£©£¬Ôò-2Óëx
1ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù
¡à-2x
1=
£¬¡àx
1=
£¬¡ày
1=
¡àP£¨
£¬
£©
ͬÀí¿ÉµÃQ£¨
£¬£©
¡à
kFP==
£¬
kFQ==
¡ßP£¬F£¬QÈýµã¹²Ïߣ¬¡à
=¡à£¨m-n£©£¨9+mn£©=0
¡ßm¡Ùn£¬¡à9+mn=0£¬¡àmn=-9
¡àÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-4£©
2+£¨y-
£©
2=
()2½«£¨1£¬0£©´úÈëÉÏʽµÄ×ø±ê£¬¿ÉµÃ£¨1-4£©
2+£¨0-
£©
2=-mn++£¨
£©
2=
()2¡àÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²µÄ·½³Ì¾¹ýµã£¨1£¬0£©
ͬÀí£¨7£¬0£©Ò²ÔÚÔ²ÉÏ£¬
×ÛÉÏ£¬ÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²¾¹ýxÖáÉϵĶ¨µã£¨1£¬0£©£¬£¨7£¬0£©£»
£¨3£©ÓÉ£¨2£©Öª£¬ÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²¾¹ýxÖáÉϵĶ¨µã£¨1£¬0£©£¬£¨7£¬0£©£¬
¹ÊÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²µÄ°ë¾¶µÄ×îСֵΪ
=3¡àÒÔÏ߶ÎMNΪֱ¾¶µÄÔ²µÄÃæ»ýµÄ×îСֵΪ9¦Ð£®