【题目】“双11”促销活动中,某商场为了吸引顾客,搞好促销活动,采用“双色球”定折扣的方式促销,即:在红、黄的两个纸箱中分别装有大小完全相同的红、黄球各5个,每种颜色的5个球上标有1,2,3,4,5等5个数字,顾客结账时,先分别从红、黄的两个纸箱中各取一球,按两个球的数字之和为折扣打折,如,就按3折付款,并规定取球后不再增加商品.按此规定,顾客享有6折及以下折扣的概率是( )
A.B.
C.
D.
科目:高中数学 来源: 题型:
【题目】如图,在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的边长AB=3,侧棱AA1=2,E是棱CC1的中点,点F满足 =2
.
(1)求异面直线FE和DB1所成角的余弦值;
(2)记二面角E-B1F-A的大小为θ,求|cosθ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:如果一个数列从第2项起,每一项与它前一项的差都大于或等于2,则称这个数列为“D数列”.
(1)若首项为1的等差数列的每一项均为正整数,且数列
为“D数列”,其前n项和
满足
(
),求数列
的通项公式;
(2)已知等比数列的每一项均为正整数,且数列
为“D数列”,
,设
(
),试判断数列
是否为“D数列”,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题14分)
如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.
(Ⅰ)求证:PE⊥BC;
(Ⅱ)求证:平面PAB⊥平面PCD;
(Ⅲ)求证:EF∥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱柱中,
为
的中点,点
在侧棱
上,
平面
(1) 证明:是
的中点;
(2) 设,四边形
为边长为4正方形,四边形
为矩形,且异面直线
与
所成的角为
,求该三棱柱
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】淮北市第一次模拟考试理科共考语文、数学、英语、物理、化学、生物六科,安排在某两日的四个半天考完,每个半天考一科或两科.若语文、数学、物理三科中任何两科不能排在同一个半天,则此次考试不同安排方案的种数有( )(同一半天如果有两科考试不计顺序)
A.B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线过点
和椭圆
:
的焦点且方向向量为
,且椭圆
的中心关于直线
的对称点在直线
上.
(1)求椭圆的方程;
(2)是否存在过点的直线
交椭圆
于点
、
,且满足
(
为原点)?若存在,求直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形中,
为
的中点,将
沿直线
翻折成
,连结
,
为
的中点,则在翻折过程中,下列说法中所有正确的是( )
A.存在某个位置,使得
B.翻折过程中,的长是定值
C.若,则
D.若,当三棱锥
的体积最大时,三棱锥
的外接球的表面积是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com