精英家教网 > 高中数学 > 题目详情
中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为(  )
分析:利用抛物线的定义,确定M的坐标,利用点差法将线段AB中点M的坐标代入,即可求得结论.
解答:解:∵M在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,
∴M的横坐标为
p
2
,∴M(
p
2
,p)
设双曲线方程为
x2
a2
-
y2
b2
=1
(a>0,b>0),A(x1,y1),B(x2,y2),则
x12
a2
-
y12
b2
=1
x22
a2
-
y22
b2
=1

两式相减,并将线段AB中点M的坐标代入,可得
p(x1-x2)
a2
-
2p(y1-y2)
b2
=0

y1-y2
x1-x2
=
b2
2a2

y1-y2
x1-x2
=
a2-c2
2a2
=
e2-1
2

故选A.
点评:本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆w的中心在原点,焦点在x轴上,长轴长为4,离心率为
6
3
,△ABC的顶点A,B在椭圆w上,C在直线l:y=x+2上,且AB∥l.
(1)求椭圆w的方程;
(2)当AB边通过坐标原点O时,求AB的长及△ABC的面积;
(3)当∠ABC=90°,且斜边AC的长最大时,求AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,函数y=f(x)的图象是中心在原点、焦点在x轴上的椭圆的两段弧,则不等式f(x)<f(-x)+x的解集为(  )
A、{x|-
2
<x<0或
2
<x≤2}
B、{x|-2≤x<-
2
2
<x≤2}
C、{x|-2≤x<-
2
2
2
2
<x≤2}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,函数y=f(x)的图象是中心在原点,焦点在x轴上的椭圆的两段弧,则不等式f(x)<f(-x)+x的解集为(  )
A、{
2
2
<x≤2
2
2
<x≤2
}
B、{x|-2≤x<
2
2
<x≤2}
C、{x|-
2
<x<0
2
<x≤2
}
D、{x|-
2
<x<
2
,且x≠0}

查看答案和解析>>

科目:高中数学 来源:2010-2011年山西省孝义市高二第二次月考考试数学文卷 题型:解答题

(12分)

    已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过椭圆左顶点作直线l垂直于x轴,若动点M到椭圆右焦点的距离比它到直线l的距离小4,求点M的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:东城区模拟 题型:解答题

已知椭圆w的中心在原点,焦点在x轴上,长轴长为4,离心率为
6
3
,△ABC的顶点A,B在椭圆w上,C在直线l:y=x+2上,且ABl.
(1)求椭圆w的方程;
(2)当AB边通过坐标原点O时,求AB的长及△ABC的面积;
(3)当∠ABC=90°,且斜边AC的长最大时,求AB所在直线的方程.

查看答案和解析>>

同步练习册答案