精英家教网 > 高中数学 > 题目详情
14.设实数a、b满足a<b,则下列各式中,可能不成立的是(  )
A.1-a>1-bB.a2+b2>2abC.|a|<|b|D.(b-a)(a2+b2)>0

分析 根据不等式的基本性质加以判断即可.

解答 解:∵a<b,
∴-a>-b,
∴1-a>1-b,故A正确;
∵(a-b)2>0,
∴a2+b2-2ab>0,
∴a2+b2>2ab,故B正确,
当a=-2,b=1时,|a|>|b|,故C不成立,
∵a<b,
∴b-a>0,
∴(b-a)(a2+b2)>0,故D正确,
故选:C.

点评 本题考查了不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知抛物线y=x2的焦点为F,过点F的直线与抛物线相交于A,B两点,若|AB|=4,则弦AB的中点到x轴的距离等于$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.当x>0时.求y=$\frac{x}{4{x}^{2}+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.[普通中学做]如图所示,以Ox为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于点P、Q,已知点Q的横坐标为$\frac{4}{5}$.
(1)求$\frac{1+sin2β}{1+si{n}^{2}β}$的值;
(2)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{1}{2}$,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx-1.
(1)求使f(x)≥0成立的x的取值集合;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,已知A为锐角,a=3$\sqrt{3}$,c=6,f(A)是函数f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以(2$\sqrt{3}$,0)为圆心,截直线y=$\sqrt{3}$x得弦长为8的圆的方程是(x-2$\sqrt{3}$)2+y2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出多项式求值的秦九韶算法,如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,依次输入a为2,2,5,则输出的s=(  )
A.7B.12C.17D.34

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.有根木料长6米,要做一个如图的窗框,已知上框架与下框架的高比为1:2,问怎样利用木料,才能使光线通过窗框面积最大?并求出最大面积.(中间木挡的面积可忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设z∈C,且(1-i)z=2i(i是虚数单位),则|z|=$\sqrt{2}$.

查看答案和解析>>

同步练习册答案