精英家教网 > 高中数学 > 题目详情

在等差数列和等比数列中,a1=2,  2b1=2,  b6=32,  的前20项和S20=230.
(Ⅰ)求;
(Ⅱ)现分别从的前4中各随机抽取一项,写出相应的基本事件,并求所取两项中,满足an>bn的概率.

(I)(II).

解析试题分析:(Ⅰ)根据已知条件,建立的公差的公比的方程组,求得此类问题属于数列中的基本题型.
(Ⅱ)此类问题属于古典概型概率的计算问题,首先根据已知条件,通过“列举”得到基本事件空间,明确所有基本事件数16,而满足条件的有8个,故满足的概率为
试题解析:(Ⅰ)设的公差为的公比为
∵a1=2,  2b1=2,  b6=32,的前20项和S20=230.

解得

(Ⅱ)分别从中的前三项中各随机抽取一项,
得到基本事件(2,1),(2,2),(2,4),(2,8),(3,1),(3,2),
(3,4),(3,8),(4,1),(4,2),(4,4),(4,8),(5,1),
(5,2),(5,4),(5,8),有16个,
符合条件的有8个,
故满足的概率为
考点:等差数列、等比数列的通项公式及求和公式、古典概型概率的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列满足:是数列的前n项和.数列前n项的积为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)是否存在常数a,使得成等差数列?若存在,求出a,若不存在,说明理由;
(Ⅲ)是否存在,满足对任意自然数时,恒成立,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足
(1)求证:数列的奇数项,偶数项均构成等差数列;
(2)求的通项公式;
(3)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等差数列,且
(1)求数列的通项公式;
(2)若数列满足求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,首项为,公差为的等差数列的前项和为,满足.
(1)求通项
(2)设是首项为,公比为的等比数列,求数列的通项公式及其前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列{an}的前n项和为Sn,已知S3=,且S1,S2,S4成等比数列,
(1)求数列{an}的通项公式.
(2)若{an}又是等比数列,令bn= ,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,对任意满足,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

单调递增数列的前项和为,且满足
(1)求数列的通项公式;
(2)数列满足,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且方程有两个不同的正根,其中一根是另一根的倍,记等差数列的前项和分别为)。
(1)若,求的最大值;
(2)若,数列的公差为3,试问在数列中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列的通项公式;若不存在,请说明理由.
(3)若,数列的公差为3,且.
试证明:.

查看答案和解析>>

同步练习册答案